Extracting partial canonical structure for large scale eigenvalue problems
暂无分享,去创建一个
[1] Tosio Kato. Perturbation theory for linear operators , 1966 .
[2] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[3] V. Kublanovskaya. AB-Algorithm and its modifications for the spectral problems of linear pencils of matrices , 1984 .
[4] Thierry BraconnieryCERFACS. Stopping Criteria for Eigensolvers , 1994 .
[5] D. Sorensen. TRUNCATED QZ METHODS FOR LARGE SCALE GENERALIZED EIGENVALUE PROBLEMS , 1998 .
[6] P. Dooren,et al. An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .
[7] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[8] Bo Kågström,et al. A Perturbation Analysis of the Generalized Sylvester Equation $( AR - LB,DR - LE ) = ( C,F )$ , 1994, SIAM J. Matrix Anal. Appl..
[9] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .
[10] G. Shilov,et al. Linear Algebra , 1971 .
[11] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[12] H. V. D. Vorst,et al. Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .
[13] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.
[16] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[17] Gerard L. G. Sleijpen,et al. A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .
[18] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..
[19] Erik Elmroth,et al. The Set of 2-by-3 Matrix Pencils - Kronecker Structures and Their Transitions under Perturbations , 1996, SIAM J. Matrix Anal. Appl..
[20] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[21] F. R. Gantmakher. The Theory of Matrices , 1984 .
[22] Axel Ruhe. An algorithm for numerical determination of the structure of a general matrix , 1970 .
[23] D. Sorensen,et al. A Truncated RQ Iteration for Large Scale Eigenvalue Calculations , 1998 .
[24] Zhaojun Bai,et al. Algorithm 776: SRRIT: a Fortran subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix , 1997, TOMS.
[25] Jennifer A. Scott,et al. An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices , 1995, TOMS.
[26] W. Kahan,et al. Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .
[27] V. Kublanovskaya,et al. On a method of solving the complete eigenvalue problem for a degenerate matrix , 1966 .
[28] Axel Ruhe. Perturbation bounds for means of eigenvalues and invariant subspaces , 1970 .
[29] Bo Kågström,et al. An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix , 1980, TOMS.
[30] T. Hawkes,et al. Rings, Modules and Linear Algebra. , 1972 .
[31] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.
[32] K. Meerbergen,et al. The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .
[33] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[34] Bo Kågström,et al. RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .
[35] Bo Kågström,et al. Algorithm 560: JNF, An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix [F2] , 1980, TOMS.
[36] Axel Ruhe. Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .
[37] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[38] Bo Kågström,et al. Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.
[39] Peter Lancaster,et al. The theory of matrices , 1969 .
[40] Axel Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .