Extracting partial canonical structure for large scale eigenvalue problems

We present methods for computing a nearby partial Jordan-Schur form of a given matrix and a nearby partial Weierstrass-Schur form of a matrix pencil. The focus is on the use and the interplay of the algorithmic building blocks – the implicitly restarted Arnoldi method with prescribed restarts for computing an invariant subspace associated with the dominant eigenvalue, the clustering method for grouping computed eigenvalues into numerically multiple eigenvalues and the staircase algorithm for computing the structure revealing form of the projected problem. For matrix pencils, we present generalizations of these methods. We introduce a new and more accurate clustering heuristic for both matrices and matrix pencils. Particular emphasis is placed on reliability of the partial Jordan-Schur and Weierstrass-Schur methods with respect to the choice of deflation parameters connecting the steps of the algorithm such that the errors are controlled. Finally, successful results from computational experiments conducted on problems with known canonical structure and varying ill-conditioning are presented.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[3]  V. Kublanovskaya AB-Algorithm and its modifications for the spectral problems of linear pencils of matrices , 1984 .

[4]  Thierry BraconnieryCERFACS Stopping Criteria for Eigensolvers , 1994 .

[5]  D. Sorensen TRUNCATED QZ METHODS FOR LARGE SCALE GENERALIZED EIGENVALUE PROBLEMS , 1998 .

[6]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[7]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[8]  Bo Kågström,et al.  A Perturbation Analysis of the Generalized Sylvester Equation $( AR - LB,DR - LE ) = ( C,F )$ , 1994, SIAM J. Matrix Anal. Appl..

[9]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[10]  G. Shilov,et al.  Linear Algebra , 1971 .

[11]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[12]  H. V. D. Vorst,et al.  Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .

[13]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[16]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[17]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[18]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..

[19]  Erik Elmroth,et al.  The Set of 2-by-3 Matrix Pencils - Kronecker Structures and Their Transitions under Perturbations , 1996, SIAM J. Matrix Anal. Appl..

[20]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[21]  F. R. Gantmakher The Theory of Matrices , 1984 .

[22]  Axel Ruhe An algorithm for numerical determination of the structure of a general matrix , 1970 .

[23]  D. Sorensen,et al.  A Truncated RQ Iteration for Large Scale Eigenvalue Calculations , 1998 .

[24]  Zhaojun Bai,et al.  Algorithm 776: SRRIT: a Fortran subroutine to calculate the dominant invariant subspace of a nonsymmetric matrix , 1997, TOMS.

[25]  Jennifer A. Scott,et al.  An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices , 1995, TOMS.

[26]  W. Kahan,et al.  Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .

[27]  V. Kublanovskaya,et al.  On a method of solving the complete eigenvalue problem for a degenerate matrix , 1966 .

[28]  Axel Ruhe Perturbation bounds for means of eigenvalues and invariant subspaces , 1970 .

[29]  Bo Kågström,et al.  An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix , 1980, TOMS.

[30]  T. Hawkes,et al.  Rings, Modules and Linear Algebra. , 1972 .

[31]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[32]  K. Meerbergen,et al.  The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .

[33]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[34]  Bo Kågström,et al.  RGSD an algorithm for computing the Kronecker structure and reducing subspaces of singular A-lB pencils , 1986 .

[35]  Bo Kågström,et al.  Algorithm 560: JNF, An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix [F2] , 1980, TOMS.

[36]  Axel Ruhe Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems , 1994 .

[37]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[38]  Bo Kågström,et al.  Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.

[39]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[40]  Axel Ruhe Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. matrix pairs , 1994 .