Plant neurobiology: an integrated view of plant signaling.

[1]  Barbara G. Pickard,et al.  Action potentials in higher plants , 1973, The Botanical Review.

[2]  R. Bloch Polarity in plants , 1943, The Botanical Review.

[3]  A. Bel,et al.  Electrical Signalling via Plasmodesmata , 2007 .

[4]  Ben Scheres,et al.  Polar PIN Localization Directs Auxin Flow in Plants , 2006, Science.

[5]  Zerihun Tadele,et al.  PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux , 2006, Science.

[6]  M. B. Arnao,et al.  The Physiological Function of Melatonin in Plants , 2006, Plant signaling & behavior.

[7]  Klaus Palme,et al.  Auxin Immunolocalization Implicates Vesicular Neurotransmitter-Like Mode of Polar Auxin Transport in Root Apices , 2006, Plant signaling & behavior.

[8]  M. Estelle,et al.  Auxin receptors: a new role for F-box proteins. , 2006, Current opinion in cell biology.

[9]  M. Blatt,et al.  Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1 K+ Channel at the Plasma Membrane[W] , 2006, The Plant Cell Online.

[10]  Bonnie L. Bassler,et al.  Bacterial Small-Molecule Signaling Pathways , 2006, Science.

[11]  A. Murphy,et al.  The ABC of auxin transport: The role of p‐glycoproteins in plant development , 2006, FEBS letters.

[12]  E. Van Volkenburgh,et al.  Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl , 2006, Plant signaling & behavior.

[13]  Rainer Stahlberg,et al.  Historical Overview on Plant Neurobiology , 2006, Plant signaling & behavior.

[14]  Rainer Stahlberg,et al.  Slow Wave Potentials — a Propagating Electrical Signal Unique to Higher Plants , 2006 .

[15]  E. Król,et al.  Electrical Signals in Long-Distance Communication in Plants , 2006 .

[16]  J. Normann,et al.  Hydro-Electrochemical Integration of the Higher Plant — Basis for Electrogenic Flower Induction , 2006 .

[17]  Alexander G. Volkov,et al.  Electrophysiology and Phototropism , 2006 .

[18]  Peter W. Barlow,et al.  Communication in Plants. Neuronal Aspects of Plant Life , 2006 .

[19]  František Baluška,et al.  Communication in plants : neuronal aspects of plant life , 2006 .

[20]  J. Vivanco,et al.  Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa , 2006, Planta.

[21]  X. Deng,et al.  A Rice Glutamate Receptor–Like Gene Is Critical for the Division and Survival of Individual Cells in the Root Apical Meristem[W] , 2005, The Plant Cell Online.

[22]  Shepherd Va From semi-conductors to the rhythms of sensitive plants: the research of J.C. Bose. , 2005 .

[23]  Kiyotaka Okada,et al.  Intercellular movement of transcription factors. , 2005, Current opinion in plant biology.

[24]  I. Macháčková,et al.  Melatonin in higher plants: occurrence and possible functions , 2005, Journal of pineal research.

[25]  A. Trewavas Green plants as intelligent organisms. , 2005, Trends in plant science.

[26]  F. Baluška,et al.  The endocytic network in plants. , 2005, Trends in cell biology.

[27]  Rainer Matyssek,et al.  Characteristics of Electrical Signals in Poplar and Responses in Photosynthesis1 , 2005, Plant Physiology.

[28]  Kosuke Yamamoto,et al.  Molecular Characterization of Maize Acetylcholinesterase. A Novel Enzyme Family in the Plant Kingdom1 , 2005, Plant Physiology.

[29]  Stefano Mancuso,et al.  Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. , 2005, Analytical biochemistry.

[30]  A. Murphy,et al.  Endocytotic cycling of PM proteins. , 2005, Annual review of plant biology.

[31]  Frantisek Baluska,et al.  Plant synapses: actin-based domains for cell-to-cell communication. , 2005, Trends in plant science.

[32]  S. Filleur,et al.  Nitrate and glutamate sensing by plant roots. , 2005, Biochemical Society transactions.

[33]  Jae-Yean Kim Regulation of short-distance transport of RNA and protein. , 2005, Current opinion in plant biology.

[34]  V. Shepherd From semi-conductors to the rhythms of sensitive plants: the research of J.C. Bose. , 2005, Cellular and molecular biology.

[35]  A. Ourry,et al.  Putative role of γ ‐aminobutyric acid (GABA) as a long‐distance signal in up‐regulation of nitrate uptake in Brassica napus L. , 2004 .

[36]  W. J. Lucas,et al.  A Systemic Small RNA Signaling System in Plants , 2004, The Plant Cell Online.

[37]  M. Craxton Synaptotagmin gene content of the sequenced genomes , 2004, BMC Genomics.

[38]  C. Laloi,et al.  Reactive oxygen signalling: the latest news. , 2004, Current opinion in plant biology.

[39]  H. Hirt,et al.  Reactive oxygen species: metabolism, oxidative stress, and signal transduction. , 2004, Annual review of plant biology.

[40]  J. Fisahn,et al.  Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. , 2004, Plant & cell physiology.

[41]  A. Nakano,et al.  Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. , 2004, Cell structure and function.

[42]  Rainer Matyssek,et al.  Transient knockout of photosynthesis mediated by electrical signals. , 2004, The New phytologist.

[43]  H. Fromm,et al.  GABA in plants: just a metabolite? , 2004, Trends in plant science.

[44]  Zhi-Yong Wang,et al.  Brassinosteroid signal transduction--choices of signals and receptors. , 2004, Trends in plant science.

[45]  Mutsumi Yamagami,et al.  Two Distinct Signaling Pathways Participate in Auxin-Induced Swelling of Pea Epidermal Protoplasts , 2004, Plant Physiology.

[46]  E. Volkenburgh,et al.  The electrical response ofAvena coleoptile cortex to auxins , 1996, Planta.

[47]  G. Pearce,et al.  Autoradiographic and biochemical evidence for the systemic translocation of systemin in tomato plants , 1995, Planta.

[48]  Transport processes in stimulated and non-stimulated leaves of Mimosa pudica , 1988, Trees.

[49]  Jörg Fromm,et al.  Transport processes in stimulated and non-stimulated leaves of Mimosa pudica , 1988, Trees.

[50]  Jörg Fromm,et al.  Transport processes in stimulated and non-stimulated leaves of Mimosa pudica , 1988, Trees.

[51]  A. W. Spanjers Bioelectric potential changes in the style of Lilium longiflorum Thunb. after self- and cross-pollination of the stigma , 1981, Planta.

[52]  R. M. Spanswick Electrical coupling between cells of higher plants: A direct demonstration of intercellular communication , 1972, Planta.

[53]  A. Ourry,et al.  Putative role of g-aminobutyric acid ( GABA ) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus , 2004 .

[54]  Peter W. Barlow,et al.  Root apices as plant command centres: the unique 'brain-like' status of the root apex transition zone , 2004 .

[55]  J. Vivanco,et al.  How plants communicate using the underground information superhighway. , 2004, Trends in plant science.

[56]  G. Grant,et al.  A role for glycine in the gating of plant NMDA-like receptors. , 2003, The Plant journal : for cell and molecular biology.

[57]  T. Müller,et al.  ATP-independent contractile proteins from plants , 2003, Nature materials.

[58]  T. Baskin,et al.  Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. , 2003, Plant & cell physiology.

[59]  D. Preuss,et al.  Pollen Tube Growth and Guidance Is Regulated by POP2, an Arabidopsis Gene that Controls GABA Levels , 2003, Cell.

[60]  A. Murphy,et al.  Vesicular cycling mechanisms that control auxin transport polarity. , 2003, Trends in plant science.

[61]  Anthony Trewavas,et al.  Aspects of plant intelligence. , 2003, Annals of botany.

[62]  Frantisek Baluska,et al.  Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? , 2003, Trends in cell biology.

[63]  Jiman Kang,et al.  The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Friml,et al.  Auxin transport - shaping the plant. , 2003, Current opinion in plant biology.

[65]  I. Moore,et al.  The Arabidopsis Rab GTPase family: another enigma variation. , 2002, Current opinion in plant biology.

[66]  F. Baluška,et al.  Involvement of the mitogen‐activated protein kinase SIMK in regulation of root hair tip growth , 2002, The EMBO journal.

[67]  E. Brenner Drugs in the Plant , 2002, Cell.

[68]  T. Kawano,et al.  Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid-dependent superoxide generation by horseradish peroxidase. , 2001, Biochemical and biophysical research communications.

[69]  K. Palme,et al.  The auxin signal for protoplast swelling is perceived by extracellular ABP1. , 2001, The Plant journal : for cell and molecular biology.

[70]  M. Allard,et al.  The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms. , 2001, Molecular biology and evolution.

[71]  G. Coruzzi,et al.  The Identity of Plant Glutamate Receptors , 2001, Science.

[72]  H. Nam,et al.  Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. , 2001, Plant & cell physiology.

[73]  V. V. Roshchina,et al.  Neurotransmitters in Plant Life , 2001 .

[74]  G. Coruzzi,et al.  Arabidopsis Mutants Resistant to S(+)-β-Methyl-α, β-Diaminopropionic Acid, a Cycad-Derived Glutamate Receptor Agonist , 2000 .

[75]  E. Spalding,et al.  Glutamate-gated calcium fluxes in Arabidopsis. , 2000, Plant physiology.

[76]  N. Raikhel,et al.  The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. , 2000, Plant physiology.

[77]  I. Sealy,et al.  Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. , 2000, Plant physiology.

[78]  R. Schmidt The Arabidopsis genome , 2000 .

[79]  Volko Green plants : electrochemical interfaces , 2000 .

[80]  G. Coruzzi,et al.  Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist. , 2000, Plant physiology.

[81]  P. Spencer,et al.  Food toxins, ampa receptors, and motor neuron diseases. , 1999, Drug metabolism reviews.

[82]  G. Coruzzi,et al.  Glutamate-receptor genes in plants , 1998, Nature.

[83]  Bratislav Stankovic,et al.  The Wound Response in Tomato Involves Rapid Growth and Electrical Responses, Systemically Up-Regulated Transcription of Proteinase Inhibitor and Calmodulin and Down-Regulated Translation , 1998 .

[84]  Delbarre,et al.  Short-Lived and Phosphorylated Proteins Contribute to Carrier-Mediated Efflux, but Not to Influx, of Auxin in Suspension-Cultured Tobacco Cells , 1998, Plant physiology.

[85]  E. P. Huang,et al.  Synaptic plasticity: A role for nitric oxide in LTP , 1997, Current Biology.

[86]  J. Fisahn,et al.  Localized Wounding by Heat Initiates the Accumulation of Proteinase Inhibitor II in Abscisic Acid-Deficient Plants by Triggering Jasmonic Acid Biosynthesis , 1996, Plant physiology.

[87]  B. Stanković,et al.  Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato , 1996, FEBS letters.

[88]  E. Johannes,et al.  Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin‐induced extracellular acidification of mesophyll tissue , 1996 .

[89]  J. Fisahn,et al.  Proteinase Inhibitor II Gene Expression Induced by Electrical Stimulation and Control of Photosynthetic Activity in Tomato Plants , 1995 .

[90]  A. Jagendorf,et al.  Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[91]  David Attenborough The private life of plants : a natural history of plant behaviour , 1995 .

[92]  Jörg Fromm,et al.  Action potentials in maize sieve tubes change phloem translocation , 1994 .

[93]  H. Jones,et al.  The relationship between wound‐induced proteinase inhibitors and hydraulic signals in tomato seedlings , 1994 .

[94]  P. Minchin,et al.  Electrical signalling and systemic proteinase inhibitor induction in the wounded plant , 1992, Nature.

[95]  C. Slayman,et al.  Ion channels in Arabidopsis plasma membrane : transport characteristics and involvement in light-induced voltage changes. , 1992, Plant physiology.

[96]  P. Simons,et al.  The action plant : movement and nervous behaviour in plants , 1992 .

[97]  G. Pearce,et al.  A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins , 1991, Science.

[98]  K. Palme,et al.  The electrical response of maize to auxins. , 1991, Biochimica et biophysica acta.

[99]  D. Botting Humboldt and the cosmos , 1973 .

[100]  P. Tompkins,et al.  The Secret Life of Plants , 1973 .

[101]  A. M. Sinyukhin,et al.  Action Potentials in the Reproductive System of Plants , 1967, Nature.

[102]  Luigi Galvani,et al.  De viribus electricitatis in motu musculari , 1967 .

[103]  E. Bünning Die seismonastischen Reaktionen , 1959 .

[104]  J. C. Bose,et al.  The Nervous Mechanism of Plants , 1926, Nature.

[105]  F. F. Blackman Plant Response as a Means of Physiological Investigation , 1907, Nature.

[106]  A. J. Ewart,et al.  The Physiology of Plants, a Treatise upon the Metabolism and Sources of Energy in Plants , 2009, Nature.

[107]  G. Haberlandt Das reizleitende Gewebesystem der Sinnpflanze : eine anatomisch-physiologische Untersuchung , 1890 .

[108]  J. Burdon-Sanderson I. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula , 1873, Proceedings of the Royal Society of London.