Towards a unified terminology for angiosperm reproductive systems

Angiosperms display an enormous diversity of forms, functions and strategies when it comes to reproduction. This multiplicity has been translated into several terminological concepts and contexts, which have facilitated further research. On the other hand, the use of terms that address the reproduction of flowering plants has been shown to be inconsistent in the literature, complicating communication among specialists. Key terms, such as “reproductive system”, “mating system” and “sexual system”, among others, have been frequently cited as synonyms, and even used in different circumstances. This review proposes to establish a consistent nomenclatural classification in the field of angiosperms reproductive biology in order to facilitate communication among researchers. Specific terms related to angiosperm reproduction are conceptualized and distributed into five general systems: four related to sexual reproduction (sexual, floral, incompatibility and mating systems); and one related to asexual reproduction (apomictic systems). Our proposal is not to establish a natural classification, but rather to provide a general overview of the main concepts that were grouped here in an artificial and functional manner. Our aim is to advance the field of reproductive biology of angiosperms with consistent and well-defined applications of relevant terminologies.

[1]  P. Oliveira,et al.  Unusual diversity of apomictic mechanisms in a species of Miconia, Melastomataceae , 2018, Plant Systematics and Evolution.

[2]  C. Goodwillie,et al.  The best of both worlds? A review of delayed selfing in flowering plants. , 2018, American journal of botany.

[3]  P. Oliveira,et al.  Unexpectedly high genetic diversity and divergence among populations of the apomictic Neotropical tree Miconia albicans. , 2018, Plant biology.

[4]  H. Consolaro,et al.  Floral biology of the velvetseed Guettarda platypoda DC. (Rubiaceae): Atypical distyly or style dimorphism? , 2018 .

[5]  P. Oliveira,et al.  Bow to the middle: reproductive system and style behaviour of Tococa guianensis, a widespread Melastomataceae from the Neotropics , 2018, Plant Systematics and Evolution.

[6]  L. Harder,et al.  The Ecology of Mating and Its Evolutionary Consequences in Seed Plants , 2017 .

[7]  Charles S. P. Foster,et al.  The ancestral flower of angiosperms and its early diversification , 2017, Nature Communications.

[8]  N. S. Júnior Evidence for post-zygotic self-incompatibility in Handroanthus impetiginosus (Bignoniaceae) , 2017, Plant Reproduction.

[9]  R. Harley,et al.  Resupinate Dimorphy, a novel pollination strategy in two-lipped flowers of Eplingiella (Lamiaceae) , 2017 .

[10]  J. Pannell,et al.  On the rarity of dioecy in flowering plants , 2017, Molecular ecology.

[11]  P. Gibbs Head over heels about floral polymorphism: a novel floral dimorphism based on resupination , 2017 .

[12]  Túlio Sá,et al.  Floral biology, reciprocal herkogamy and breeding system in four Psychotria species (Rubiaceae) in Brazil , 2016 .

[13]  T. Marcussen,et al.  Cleistogamy and phylogenetic position of Viola uliginosa (Violaceae) re‐examined , 2016 .

[14]  P. Oliveira,et al.  Sporophytic apomixis in polyembryonic Handroanthus serratifolius (Vahl) S.O. Grose (Bignoniaceae) characterizes the species as an agamic polyploid complex , 2016, Plant Systematics and Evolution.

[15]  S. Barrett,et al.  Variation in style morph frequencies in tristylous Lythrum salicaria in the Iberian Peninsula: the role of geographical and demographic factors. , 2015, Annals of botany.

[16]  D. Charlesworth Plant contributions to our understanding of sex chromosome evolution. , 2015, The New phytologist.

[17]  S. Billiard,et al.  The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. , 2015, Journal of theoretical biology.

[18]  D. Hojsgaard,et al.  A little bit of sex matters for genome evolution in asexual plants , 2015, Front. Plant Sci..

[19]  H. Yoshida,et al.  Cleistogamy Decreases the Effect of High Temperature Stress at Flowering in Rice , 2015 .

[20]  S. Renner The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. , 2014, American journal of botany.

[21]  K. Suetsugu Gastrodia flexistyloides (Orchidaceae), a new mycoheterotrophic plant with complete cleistogamy from Japan , 2014 .

[22]  P. Gibbs Late-acting self-incompatibility--the pariah breeding system in flowering plants. , 2014, The New phytologist.

[23]  A. Koltunow,et al.  The Genetic Control of Apomixis: Asexual Seed Formation , 2014, Genetics.

[24]  D. Hojsgaard,et al.  Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics , 2014, Critical reviews in plant sciences.

[25]  A. Dornier,et al.  HOW SELFING, INBREEDING DEPRESSION, AND POLLEN LIMITATION IMPACT NUCLEAR‐CYTOPLASMIC GYNODIOECY: A MODEL , 2013, Evolution; international journal of organic evolution.

[26]  P. Oliveira,et al.  Diplospory and obligate apomixis in Miconia albicans (Miconieae, Melastomataceae) and an embryological comparison with its sexual congener M. chamissois , 2013, Plant Systematics and Evolution.

[27]  P. Oliveira,et al.  Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa. , 2012, Annals of botany.

[28]  M. M. Ferrer,et al.  Self-sterility in flowering plants: preventing self-fertilization increases family diversification rates. , 2012, Annals of botany.

[29]  M. Costa,et al.  Polyembryony increases embryo and seedling mortality but also enhances seed individual survival in Handroanthus species (Bignoniaceae) , 2012 .

[30]  M. Iwano,et al.  Self/non-self discrimination in angiosperm self-incompatibility. , 2012, Current opinion in plant biology.

[31]  L. Navarro,et al.  Unusual heterostyly: style dimorphism and self-incompatibility are not tightly associated in Lithodora and Glandora (Boraginaceae). , 2012, Annals of botany.

[32]  G. Du,et al.  Variation in floral sex allocation, female success, and seed predation within racemiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae) , 2012, Journal of Plant Research.

[33]  C. Ruan,et al.  Adaptive Significance of Floral Movement , 2011 .

[34]  Z. G. M. Quirino,et al.  Fenologia reprodutiva, biologia floral e polinização de Allamanda blanchetii, uma Apocynaceae endêmica da Caatinga , 2011 .

[35]  J. Gómez,et al.  Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. , 2011, The New phytologist.

[36]  R. Bertin,et al.  Differential herbivory on disk and ray flowers of gynomonoecious asters and goldenrods (Asteraceae) , 2010 .

[37]  M. Vallejo‐Marín,et al.  Trait correlates and functional significance of heteranthery in flowering plants. , 2010, The New phytologist.

[38]  P. Qin,et al.  Style curvature and its adaptive significance in the Malvaceae , 2010, Plant Systematics and Evolution.

[39]  Y. Savidan Apomixis: genetics and breeding. , 2010 .

[40]  Guillaume Constantin de Magny,et al.  A Self-Incompatibility System Explains High Male Frequencies in an Androdioecious Plant , 2010, Science.

[41]  E. Hörandl,et al.  The evolution of self-fertility in apomictic plants , 2010, Sexual Plant Reproduction.

[42]  S. Barrett Darwin's legacy: the forms, function and sexual diversity of flowers , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  S. Barrett Understanding plant reproductive diversity , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  G. A. Venturieri,et al.  Floral biology of cacauhy (Theobroma speciosum - Malvaceae) , 2010 .

[45]  D. Charlesworth,et al.  The genetics of inbreeding depression , 2009, Nature Reviews Genetics.

[46]  L. Freitas,et al.  Floral biology and mechanisms of spontaneous self-pollination in five neotropical species of Gentianaceae , 2009 .

[47]  Matthew R. Tucker,et al.  Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. , 2009, Functional plant biology : FPB.

[48]  M. Vallejo‐Marín,et al.  Modification of flower architecture during early stages in the evolution of self-fertilization. , 2009, Annals of botany.

[49]  J. Thomson,et al.  Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates , 2009, Journal of evolutionary biology.

[50]  Nadia Talent,et al.  Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae , 2009, Theory in Biosciences.

[51]  E. Schulze,et al.  Temporal variation in δ13C, wood density and microfibril angle in variously irrigated Eucalyptus nitens. , 2009, Functional plant biology : FPB.

[52]  S. Renner,et al.  Why two kinds of stamens in buzz‐pollinated flowers? Experimental support for Darwin's division‐of‐labour hypothesis , 2008 .

[53]  W. Ye,et al.  Secondary pollen presentation and style morphology in the invasive weed Mikania micrantha in South China. , 2008 .

[54]  T. Naumova Apomixis and amphimixis in flowering plants , 2008, Cytology and Genetics.

[55]  F. Thuijsman,et al.  Optimal Sex Allocation in Plants and the Evolution of Monoecy , 2008 .

[56]  J. Silvertown The Evolutionary Maintenance of Sexual Reproduction: Evidence from the Ecological Distribution of Asexual Reproduction in Clonal Plants , 2008, International Journal of Plant Sciences.

[57]  S. Otto,et al.  The Dynamic Nature of Apomixis in the Angiosperms , 2008, International Journal of Plant Sciences.

[58]  T. Dickinson,et al.  Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications , 2007, Plant Systematics and Evolution.

[59]  T. B. Batygina,et al.  Phenomenon of polyembryony. Genetic heterogeneity of seeds , 2007, Russian Journal of Developmental Biology.

[60]  T. Culley,et al.  The cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms , 2007, The Botanical Review.

[61]  Da‐Yong Zhang,et al.  Adaptive significance of flexistyly in Alpinia blepharocalyx (Zingiberaceae): a hand-pollination experiment. , 2006, Annals of botany.

[62]  D. Charlesworth Evolution of Plant Breeding Systems , 2006, Current Biology.

[63]  M. Verdú,et al.  THE EVOLUTION OF GENDER SPECIALIZATION FROM DIMORPHIC HERMAPHRODITISM: PATHS FROM HETERODICHOGAMY TO GYNODIOECY AND ANDRODIOECY , 2006, Evolution; international journal of organic evolution.

[64]  N. Cappuccino,et al.  A field study of seed dispersal and seedling performance in the invasive exotic vine Vincetoxicum rossicum , 2005 .

[65]  C. Mendes-Rodrigues,et al.  Polyembryony and apomixis in Eriotheca pubescens (Malvaceae - Bombacoideae). , 2005, Plant biology.

[66]  P. Diggle,et al.  The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. , 2005, American journal of botany.

[67]  A. Isogai,et al.  Self-incompatibility in plants. , 2005, Annual review of plant biology.

[68]  N. Ramírez Plant sexual systems, dichogamy, and herkogamy in the Venezuelan Central Plain , 2005 .

[69]  G. Anderson,et al.  Are ‘mating systems’ ‘breeding systems’ of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? , 2005, Plant Systematics and Evolution.

[70]  R. Bicknell,et al.  Understanding Apomixis: Recent Advances and Remaining Conundrums , 2004, The Plant Cell Online.

[71]  N. Takebayashi,et al.  Pollen Limitation and the Evolution of Androdioecy from Dioecy , 2004, The American Naturalist.

[72]  F. C. H. Franklin,et al.  Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. , 2003, Trends in plant science.

[73]  Ueli Grossniklaus,et al.  Apomixis: a developmental perspective. , 2003, Annual review of plant biology.

[74]  D. Grimanelli,et al.  Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. , 2003, Genetics.

[75]  S. Barrett,et al.  The Comparative Biology of Mirror‐Image Flowers , 2003, International Journal of Plant Sciences.

[76]  S. Hiscock,et al.  The different mechanisms of sporophytic self-incompatibility. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[77]  A. Richards Apomixis in flowering plants: an overview. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  S. Barrett Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  T. Day,et al.  A Theoretical Investigation of the Evolution and Maintenance of Mirror‐Image Flowers , 2003, The American Naturalist.

[80]  D. Charlesworth,et al.  Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis Lyrata (Brassicaceae) with sporophytic control of self-incompatibility , 2003, Heredity.

[81]  P. Bozhkov,et al.  Programmed cell death eliminates all but one embryo in a polyembryonic plant seed , 2002, Cell Death and Differentiation.

[82]  S. Barrett,et al.  Enantiostyly: Solving the puzzle of mirror-image flowers , 2002, Nature.

[83]  W. Kress,et al.  Mating system and stigmatic behaviour during flowering of Alpinia kwangsiensis (Zingiberaceae) , 2002, Plant Systematics and Evolution.

[84]  S. Barrett Evolution of sex: The evolution of plant sexual diversity , 2002, Nature Reviews Genetics.

[85]  S. Barrett,et al.  Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism. , 2002, American journal of botany.

[86]  S. Barrett,et al.  Sexual interference of the floral kind , 2002, Heredity.

[87]  D. Charlesworth,et al.  Plant sex determination and sex chromosomes , 2002, Heredity.

[88]  S. Renner How common is heterodichogamy , 2001 .

[89]  W. Kress,et al.  Pollination: Flexible style that encourages outcrossing , 2001, Nature.

[90]  B. Charlesworth,et al.  The degeneration of Y chromosomes. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[91]  J. C. Heilbuth Lower Species Richness in Dioecious Clades , 2000, The American Naturalist.

[92]  K. Holsinger Reproductive systems and evolution in vascular plants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. Barrett,et al.  The Evolution and Function of Stylar Polymorphisms in Flowering Plants , 2000 .

[94]  L. Harder,et al.  The mating consequences of sexual segregation within inflorescences of flowering plants , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  C. Eckert CONTRIBUTIONS OF AUTOGAMY AND GEITONOGAMY TO SELF-FERTILIZATION IN A MASS-FLOWERING, CLONAL PLANT , 2000 .

[96]  M. Donoghue,et al.  Phylogenetic Analysis of Dioecy in Monocotyledons , 2000, The American Naturalist.

[97]  S. Barrett The evolution of mating strategies in flowering plants , 1998 .

[98]  D. Couvet,et al.  Main role of self-pollination rate on reproductive allocations in pseudogamous apomicts , 1997, Theoretical and Applied Genetics.

[99]  J. Carman Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony , 1997 .

[100]  A. Richards Genetic variability in obligate apomicts of the genusTaraxacum , 1996, Folia Geobotanica.

[101]  Mark Williamson,et al.  The characters of successful invaders , 1996 .

[102]  R. Cruden,et al.  EMBRYOPHYTES HAVE EQUIVALENT SEXUAL PHENOTYPES AND BREEDING SYSTEMS : WHY NOT A COMMON TERMINOLOGY TO DESCRIBE THEM ? , 1995 .

[103]  R. Ricklefs,et al.  Dioecy and its correlates in the flowering plants , 1995 .

[104]  Christian M. Newman,et al.  Dichogamy in angiosperms , 1993, The Botanical Review.

[105]  J. Richards,et al.  PROTANDRY, INCOMPATIBILITY, AND SECONDARY POLLEN PRESENTATION IN CEPHALANTHUS OCCIDENTALS (RUBIACEAE) , 1993 .

[106]  D. G. Lloyd,et al.  Self- and Cross-Fertilization in Plants. I. Functional Dimensions , 1992, International Journal of Plant Sciences.

[107]  D. G. Lloyd,et al.  Self- and Cross-Fertilization in Plants. II. The Selection of Self- Fertilization , 1992, International Journal of Plant Sciences.

[108]  J. Zimmerman Ecological Correlates of Labile Sex Expression in the Orchid Catasetum Viridiflavum , 1991 .

[109]  K. Spalik,et al.  On evolution of andromonoecy and 'overproduction' of flowers : a resource allocation model , 1991 .

[110]  N. Ramírez,et al.  Reproductive biology of a tropical palm swamp community in the venezuelan llanos , 1990 .

[111]  P. Gibbs Do homomorphic and heteromorphic self-incompatibility systems have the same sporophytic mechanism? , 1986, Plant Systematics and Evolution.

[112]  K. Kubitzki,et al.  Synchronized dichogamy and dioecy in neotropicalLauraceae , 1984, Plant Systematics and Evolution.

[113]  D. Charlesworth Androdioecy and the evolution of dioecy , 1984 .

[114]  E. Lord,et al.  COMPARATIVE FLOWER DEVELOPMENT IN THE CLEISTOGAMOUS SPECIES VIOLA ODORATA. II. AN ORGANOGRAPHIC STUDY , 1983 .

[115]  K. Bawa,et al.  SELF‐INCOMPATIBILITY SYSTEMS IN THE RUBIACEAE OF A TROPICAL LOWLAND WET FOREST , 1983 .

[116]  E. Lord Cleistogamy: A tool for the study of floral morphogenesis, function and evolution , 1981, The Botanical Review.

[117]  D. Charlesworth,et al.  A further study of the problem of the maintenance of females in Gynodioecious species , 1981, Heredity.

[118]  D. C. Freeman,et al.  INFLUENCE OF ENVIRONMENT ON THE FLORAL SEX RATIO OF MONOECIOUS PLANTS , 1981, Evolution; international journal of organic evolution.

[119]  K. Bawa Evolution of Dioecy in Flowering Plants , 1980 .

[120]  D. Lloyd SEXUAL STRATEGIES IN PLANTS , 1980 .

[121]  F. R. Ganders The biology of heterostyly , 1979 .

[122]  B. Charlesworth,et al.  A Model for the Evolution of Distyly , 1979, The American Naturalist.

[123]  B. Charlesworth,et al.  A Model for the Evolution of Dioecy and Gynodioecy , 1978, The American Naturalist.

[124]  D. Janzen A Note on Optimal Mate Selection by Plants , 1977, The American Naturalist.

[125]  D. G. Lloyd,et al.  The maintenance of gynodioecy and androdioecy in angiosperms , 1975, Genetica.

[126]  J. Heslop-Harrison Pollen Wall Development , 1968 .

[127]  H. G. Baker SUPPORT FOR BAKER'S LAW—AS A RULE , 1967, Evolution; international journal of organic evolution.

[128]  F. Cope,et al.  The mechanism of pollen incompatibility in Theobroma cacao L. , 1962, Heredity.

[129]  K. K. Pandey Time of the S Allele Action , 1958, Nature.

[130]  P. Fryxell Mode of reproduction of higher plants , 1957, The Botanical Review.

[131]  J. Dowrick,et al.  Heterostyly and homostyly in Primula obconica , 1956, Heredity.

[132]  K. Mather THE GENETICAL ARCHITECTURE OF HETEROSTYLY IN PRIMULA SINENSIS , 1950 .

[133]  H. Whitehouse Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. , 1950 .

[134]  D. Lewis THE EVOLUTION OF SEX IN FLOWERING PLANTS , 1942 .

[135]  J. Midgley,et al.  Style polymorphism in Linum (Linaceae): a case of Mediterranean parallel evolution? , 2018, Plant biology.

[136]  S. Munné-Bosch,et al.  Sex ratios in dioecious plants in the framework of global change , 2015 .

[137]  W. Armbruster,et al.  In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. , 2014, Annals of botany.

[138]  D. Charlesworth Plant sex chromosome evolution. , 2013, Journal of experimental botany.

[139]  L. Bruno,et al.  Sexual dimorphism in flowering plants , 2012 .

[140]  A. Naiki Heterostyly and the possibility of its breakdown by polyploidization , 2012 .

[141]  P. Oliveira,et al.  Breakdown of distyly and pin‐monomorphism in Psychotria carthagenensis Jacq. (Rubiaceae) , 2011 .

[142]  S. Mazer,et al.  Stigma closure and re-opening in Oroxylum indicum (Bignoniaceae): Causes and consequences. , 2010, American journal of botany.

[143]  A. Lopes,et al.  Phenology, pollination, and breeding system of the threatened tree Caesalpinia echinata Lam. (Fabaceae), and a review of studies on the reproductive biology in the genus , 2009 .

[144]  L. Navarro,et al.  Evolutionary transitions of style polymorphisms in Lithodora (Boraginaceae) , 2009 .

[145]  J. Nasrallah,et al.  Self-incompatibility systems: barriers to self-fertilization in flowering plants. , 2008, The International journal of developmental biology.

[146]  Lu Yang,et al.  Adaptive advantages of gynomonoecious species , 2006 .

[147]  D. C. Freeman,et al.  Sex change in plants: Old and new observations and new hypotheses , 2004, Oecologia.

[148]  W. Kress,et al.  Stigmatic behavior and the pollination biology of Alpinia kwangsiensis (Zingiberaceae) , 2002 .

[149]  U. Kües,et al.  Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. , 1999, International review of cytology.

[150]  A. Isogai,et al.  A Review of Recent Studies on Homomorphic Self-Incompatibility , 1993 .

[151]  D. Calder,et al.  The Breeding Biology of Epacris impressa. Is This Species Heterostylous , 1989 .

[152]  P. Gibbs Self-incompatibility mechanism in flowering plants: some complications and clarification , 1988 .

[153]  D. G. Lloyd,et al.  The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy , 1986 .

[154]  K. Bawa,et al.  Evolution of Sexual Systems in Flowering Plants , 1981 .