Single nucleotide polymorphisms in the 3′ UTR of follistatin-like 4 and scavenger receptor class B member 1 are associated with Dazu black goat litter size

Abstract The untranslated regions (UTRs) of genes play crucial roles in regulating gene expression at the post-transcriptional level such as affecting mRNA stabilization. In this study, 26 single nucleotide polymorphisms (SNPs) and one deletion located in UTR were genotyped from 186 Dazu black goats via SNaPshot, and the correlation between genotype and litter size was analyzed. The results indicated that two SNP loci, SNP_chr17-20182525 and SNP_chr7-65652612, which were located at the 3′ UTR of scavenger receptor class B member 1 and follistatin-like 4, were significantly (P < 0.05) correlated with the litter size of first parity goats. SNP_chr7-65652612 was also significantly associated with the total litter size of first and second parity offspring (P < 0.05). In conclusion, SNP_chr7-65652612 and SNP_chr17-20182525 have correlation with the litter size of Dazu black goat and they are potential genetic markers for litter size breeding. Résumé Les séquences non traduites (UTR — « untranslated regions ») des gènes jouent un rôle primordial dans la régulation de l’expression de gènes du point de vu post transcriptionnel, comme celui de la stabilisation de l’ARNm. Dans cette étude, 26 polymorphismes mononucléotidiques (SNP — « single nucleotide polymorphism ») et une délétion localisés dans les UTR de 186 chèvres noires Dazu ont été génotypés par SNaPshot, et la corrélation entre le génotype et la taille de portée a été analysée. Les résultats indiquent qu’il y a une corrélation significative (P < 0,05) entre deux loci SNP, SNP_chr17-20182525 et SNP_chr7-65652612, qui se trouvent à l’extrémité 3′ UTR du récepteur scavenger de classe B, type 1 et apparenté à la follistatine 4, et la taille de portée des chèvres à la première parité. SNP_chr7-65652612 est aussi associé de façon significative à la taille totale de la portée de la progéniture aux premières et deuxièmes parités (P < 0,05). En conclusion, il y a corrélation entre SNP_chr7-65652612 et SNP_chr17-20182525 et la taille de portée des chèvres noires Dazu et les SNPs sont des marqueurs génétiques potentiels de taille de portée en reproduction. [Traduit par la Rédaction]

[1]  Xubin Lu,et al.  Genome-Wide Association Study on Reproduction-Related Body-Shape Traits of Chinese Holstein Cows , 2021, Animals : an open access journal from MDPI.

[2]  A. Gurgul,et al.  A genome-wide association study for prolificacy in three Polish sheep breeds , 2021, Journal of Applied Genetics.

[3]  M. Chu,et al.  Combined approaches to reveal genes associated with litter size in Yunshang black goats. , 2020, Animal genetics.

[4]  D. Lisiak,et al.  Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. , 2020, Meat science.

[5]  Yuehui Ma,et al.  Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat , 2020, Genes & Genomics.

[6]  A. Calogero,et al.  Commentary: Molecular Mechanisms of Action of FSH , 2019, Front. Endocrinol..

[7]  M. Chu,et al.  Genome-wide selection signatures analysis of litter size in Dazu black goats using single-nucleotide polymorphism , 2019, 3 Biotech.

[8]  Y. Jang,et al.  CETP, LIPC, and SCARB1 variants in individuals with extremely high high-density lipoprotein-cholesterol levels , 2019, Scientific Reports.

[9]  A. Farcaș,et al.  New Aspects Towards a Molecular Understanding of the Allicin Immunostimulatory Mechanism via Colec12, MARCO, and SCARB1 Receptors , 2019, International journal of molecular sciences.

[10]  W. Shen,et al.  Copy-number variation in goat genome sequence: A comparative analysis of the different litter size trait groups. , 2019, Gene.

[11]  Y. Liu,et al.  Comparative analysis of differentially expressed genes between the ovaries from pregnant and nonpregnant goats using RNA-Seq , 2019, Journal of Biological Research-Thessaloniki.

[12]  Hong Chen,et al.  Goat membrane associated ring-CH-type finger 1 (MARCH1) mRNA expression and association with litter size. , 2019, Theriogenology.

[13]  Hong Chen,et al.  Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. , 2019, Theriogenology.

[14]  X. Lan,et al.  Goat PDGFRB: unique mRNA expression profile in gonad and significant association between genetic variation and litter size , 2019, Royal Society Open Science.

[15]  B. Shokrollahi,et al.  Polymorphism of GDF9 and BMPR1B genes and their association with litter size in Markhoz goats , 2018, Reproduction in domestic animals = Zuchthygiene.

[16]  L. Varona,et al.  GWAS by GBLUP: Single and Multimarker EMMAX and Bayes Factors, with an Example in Detection of a Major Gene for Horse Gait , 2018, G3: Genes, Genomes, Genetics.

[17]  Harumi Uto-Kondo,et al.  Hepatic Overexpression of Endothelial Lipase Lowers High-Density Lipoprotein but Maintains Reverse Cholesterol Transport in Mice , 2018, Arteriosclerosis, thrombosis, and vascular biology.

[18]  W. Shen,et al.  Analysis of the SNP loci around transcription start sites related to goat fecundity trait base on whole genome resequencing. , 2018, Gene.

[19]  E. Ibeagha-Awemu,et al.  Polymorphisms of caprine GnRHR gene and their association with litter size in West African Dwarf goats , 2018, Molecular Biology Reports.

[20]  W. Ge,et al.  Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus) , 2016, Scientific Reports.

[21]  S. Founds,et al.  Follistatin-Like 3 Across Gestation in Preeclampsia and Uncomplicated Pregnancies Among Lean and Obese Women , 2015, Reproductive Sciences.

[22]  C. Peixoto,et al.  Accelerated growth of bovine preantral follicles in vitro after stimulation with both FSH and BMP-15 is accompanied by ultrastructural changes and increased atresia. , 2013, Theriogenology.

[23]  S. Gygi,et al.  Follistatin-like 3 (FSTL3) mediated silencing of transforming growth factor β (TGFβ) signaling is essential for testicular aging and regulating testis size. , 2013, Endocrinology.

[24]  Andrew P Morris,et al.  Basic statistical analysis in genetic case-control studies , 2011, Nature Protocols.

[25]  B. Murphy,et al.  Scavenger receptor-B1 and luteal function in mice , 2010, Journal of Lipid Research.

[26]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[27]  T. Gilliam,et al.  Population-based study of SR-BI genetic variation and lipid profile. , 2004, Atherosclerosis.

[28]  Huitong Zhou,et al.  Identification of the association between FABP4 gene polymorphisms and milk production traits in Sfakia sheep. , 2019, Archives animal breeding.

[29]  K. Tsuchida,et al.  Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. , 2000, The Journal of biological chemistry.