Efficiency and Solution Approaches to Bicriteria Nonconvex Programs

A new nonlinear scalarization specially designed for bicriteria nonconvexprogramming problems is presented. The scalarization is based on generalizedLagrangian duality theory and uses an augmented Lagrange function. The newconcepts, qi-approachable points and augmented duality gap, are introducedin order to determine the location of nondominated solutions with respect to aduality gap as well as the connectedness of the nondominated set.

[1]  A. Warburton Quasiconcave vector maximization: Connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives , 1983 .

[2]  Richard E. Wendell,et al.  Efficiency in multiple objective optimization problems , 1977, Math. Program..

[3]  A. Payne,et al.  An interactive rectangle elimination method for biobjective decision making , 1980 .

[4]  Y. Sawaragi,et al.  A generalized Lagrangian function and multiplier method , 1975 .

[5]  John Walker An Interactive Method as an Aid in Solving Bicriterion Mathematical Programming Problems , 1978 .

[6]  Matthew L. TenHuisen Generalized Lagrangian Duality in Multiple Objective Programming , 1993 .

[7]  Heinz Bernau,et al.  Use of exact penalty functions to determine efficient decisions , 1990 .

[8]  Daniel P. Giesy,et al.  Application of multiobjective optimization in aircraft control systems design , 1979, Autom..

[9]  E. Choo,et al.  Bicriteria linear fractional programming , 1982 .

[10]  Gerassimos C. Kopsidas,et al.  Multiobjective optimization of table olive preparation systems , 1995 .

[11]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[12]  Piet Rietveld,et al.  Multiple objective decision methods and regional planning , 1980 .

[13]  Edward Gaughan,et al.  Introduction to Analysis , 1969 .

[14]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[15]  A. Payne,et al.  Efficient approximate representation of bi-objective tradeoff sets , 1993 .

[16]  D. T Luc Connectedness of the efficient point sets in quasiconcave vector maximization , 1987 .

[17]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[18]  Johannes Jahn,et al.  A Bicriterial Optimization Problem of Antenna Design , 1997, Comput. Optim. Appl..

[19]  A. R. Warburton,et al.  Parametric Solution of Bicriterion Linear Fractional Programs , 1985, Oper. Res..

[20]  F. J. Gould Extensions of Lagrange Multipliers in Nonlinear Programming , 1969 .

[21]  L. Martein,et al.  ON THE BICRITERIA MAXIMIZATION PROBLEM , 1990 .

[22]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[23]  Y. D. Hu,et al.  Connectedness of the efficient set in strictly quasiconcave vector maximization , 1993 .

[24]  Y. Aksoy An interactive branch‐and‐bound algorithm for bicriterion nonconvex/mixed integer programming , 1990 .

[25]  E. Polak,et al.  An algorithm for bicriteria optimization based on the sensitivity function , 1974, CDC 1974.

[26]  Thomas L. Morin,et al.  A bicriteria mathematical programming model for nutrition planning in developing nations , 1987 .

[27]  W. B. Gearhart On the characterization of Pareto-optimal solutions in bicriterion optimization , 1979 .

[28]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[29]  A. Cambini,et al.  Linear Fractional and Bicriteria Linear Fractional Programs , 1990 .

[30]  P. Naccache,et al.  Connectedness of the set of nondominated outcomes in multicriteria optimization , 1978 .

[31]  H. P. Benson,et al.  The Vector Maximization Problem: Proper Efficiency and Stability , 1977 .

[32]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[33]  Laurence A. Wolsey,et al.  An elementary survey of general duality theory in mathematical programming , 1981, Math. Program..

[34]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[35]  David K. Smith,et al.  Mathematical Programming: Theory and Algorithms , 1986 .

[36]  J. Klose,et al.  On the Application of a Method of Reference Point Approximation to Bicriterial Optimization Problems in Chemical Engineering , 1992 .

[37]  Johannes Jahn,et al.  Reference point approximation method for the solution of bicriterial nonlinear optimization problems , 1992 .

[38]  Matthew L. Tenhuisen,et al.  On the Structure of the Non-dominated Set for Bicriteria Programmes , 1996 .

[39]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[40]  Matthew L. Tenhuisen,et al.  Vector optimization and generalized Lagrangian duality , 1994, Ann. Oper. Res..

[41]  H. P. Benson,et al.  Existence of efficient solutions for vector maximization problems , 1978 .

[42]  Siegfried Helbig,et al.  On a constructive approximation of the efficient outcomes in bicriterion vector optimization , 1994, J. Glob. Optim..

[43]  Michael M. Kostreva,et al.  Multiple-objective programming with polynomial objectives and constraints , 1992 .

[44]  Arthur M. Geoffrion,et al.  Solving Bicriterion Mathematical Programs , 1967, Oper. Res..

[45]  Harold P. Benson,et al.  Vector maximization with two objective functions , 1979 .

[46]  M. S. Bazaraa Geometry and resolution of duality gaps , 1973 .

[47]  Jyrki Wallenius,et al.  Nonlinear multiple objective optimization: An algorithm and some theory , 1992, Math. Program..

[48]  Andrzej Osyczka,et al.  Multicriterion Optimisation in Engineering , 1984 .