High-resolution optical spectroscopy using multimode interference in a compact tapered fibre

Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 10(4)-10(5)). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

[1]  D. Mutti Spectrum of Belief: Joseph von Fraunhofer and the Craft of Precision Optics. , 2001 .

[2]  Ali Adibi,et al.  Multimodal multiplex spectroscopy using photonic crystals. , 2003, Optics express.

[3]  T. Lasser,et al.  Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection , 2004 .

[4]  T. Huser,et al.  Raman spectroscopic analysis of biochemical changes in individual triglyceride-rich lipoproteins in the pre- and postprandial state. , 2005, Analytical chemistry.

[5]  Toshihiko Baba,et al.  Wavelength demultiplexer consisting of Photonic crystal superprism and superlens. , 2005, Optics express.

[6]  J. Szpunar,et al.  Mass spectrometry in bioinorganic analytical chemistry. , 2006, Mass spectrometry reviews.

[7]  P Waldron,et al.  A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. , 2007, Optics express.

[8]  P. Royer,et al.  Wavelength-scale stationary-wave integrated Fourier-transform spectrometry , 2007, 0708.0272.

[9]  Gleb Vdovin,et al.  Planar double-grating microspectrometer. , 2007, Optics express.

[10]  T. Weigel,et al.  Microresonator array for high-resolution spectroscopy. , 2007 .

[11]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[12]  Marc N. Fiddler,et al.  Laser Spectroscopy for Atmospheric and Environmental Sensing , 2009, Sensors.

[13]  Ali Adibi,et al.  Planar photonic crystal microspectrometers in silicon-nitride for the visible range. , 2009, Optics Express.

[14]  J N McMullin,et al.  Chip-scale spectrometry based on tapered hollow Bragg waveguides. , 2009, Optics express.

[15]  M. Lipson,et al.  Sub-nm resolution cavity enhanced microspectrometer. , 2010, Optics express.

[16]  I. Kymissis,et al.  Photonic crystal spectrometer. , 2010, Optics express.

[17]  Y. Vlasov,et al.  High Resolution On-chip Spectroscopy Based on Miniaturized Microdonut Resonators References and Links , 2022 .

[18]  H. Qu,et al.  Photonic bandgap fiber bundle spectrometer , 2012, CLEO 2012.

[19]  Brandon Redding,et al.  Using a multimode fiber as a high-resolution, low-loss spectrometer , 2012 .

[20]  D. Englund,et al.  A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array , 2012 .

[21]  H. Cao,et al.  Compact spectrometer based on a disordered photonic chip , 2013, Nature Photonics.

[22]  Brandon Redding,et al.  All-fiber spectrometer based on speckle pattern reconstruction. , 2013, Optics express.

[23]  Siegfried Janz,et al.  High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. , 2013, Optics letters.

[24]  J. B. Rodriguez,et al.  Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring. , 2014, Optics express.

[25]  Brandon Redding,et al.  High-resolution and broadband all-fiber spectrometers , 2014 .