Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell

[1]  P. Strzyz Cell migration: Recycling active integrin for adhesion reassembly , 2016, Nature Reviews Molecular Cell Biology.

[2]  P. Strzyz Chromatin: SIRT6 keeps pericentromeric transcription in check , 2016, Nature Reviews Molecular Cell Biology.

[3]  C. Lim,et al.  Single cell rigidity sensing: A complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling , 2016, Cell adhesion & migration.

[4]  D. Mooney,et al.  Improving Stem Cell Therapeutics with Mechanobiology. , 2016, Cell stem cell.

[5]  Pengbo Wang,et al.  Vinculin controls talin engagement with the actomyosin machinery , 2015, Nature Communications.

[6]  Paolo A Netti,et al.  Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. , 2015, Acta biomaterialia.

[7]  G. Giannone Super-resolution links vinculin localization to function in focal adhesions , 2015, Nature Cell Biology.

[8]  C. Lim,et al.  Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing , 2015, Nature Communications.

[9]  Yuejin Wu,et al.  Correction: Corrigendum: The mitochondrial uniporter controls fight or flight heart rate increases , 2015, Nature Communications.

[10]  M. Davidson,et al.  Molecular mechanism of vinculin activation and nano-scale spatial organization in focal adhesions , 2015, Nature Cell Biology.

[11]  Guillaume Charras,et al.  Physical influences of the extracellular environment on cell migration , 2014, Nature Reviews Molecular Cell Biology.

[12]  Geunbae Lim,et al.  Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region , 2013, Scientific Reports.

[13]  Patrick W Oakes,et al.  Stressing the limits of focal adhesion mechanosensitivity. , 2014, Current opinion in cell biology.

[14]  Junmin Lee,et al.  Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment , 2014, Scientific Reports.

[15]  Benjamin Geiger,et al.  Cell reorientation under cyclic stretching , 2014, Nature Communications.

[16]  M. Knörnschild,et al.  Corrigendum: Bats host major mammalian paramyxoviruses , 2014, Nature Communications.

[17]  D. Schaffer,et al.  Biophysical regulation of epigenetic state and cell reprogramming. , 2013, Nature materials.

[18]  Z. Al-Rekabi,et al.  Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics , 2013, Physical biology.

[19]  Donald E Ingber,et al.  Mechanobiology and developmental control. , 2013, Annual review of cell and developmental biology.

[20]  P. Nealey,et al.  Biophysical cues and cell behavior: the big impact of little things. , 2013, Annual review of biomedical engineering.

[21]  J. Pouwels,et al.  Integrin inactivators: balancing cellular functions in vitro and in vivo , 2013, Nature Reviews Molecular Cell Biology.

[22]  R. Fässler,et al.  Mechanosensitivity and compositional dynamics of cell–matrix adhesions , 2013, EMBO reports.

[23]  B. Geiger,et al.  Dynamic regulation of the structure and functions of integrin adhesions. , 2013, Developmental cell.

[24]  Sergey V. Plotnikov,et al.  Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration , 2012, Cell.

[25]  Sean X. Sun,et al.  Actin cap associated focal adhesions and their distinct role in cellular mechanosensing , 2012, Scientific Reports.

[26]  M. Treviño,et al.  Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity , 2012, Scientific Reports.

[27]  Pekka Lappalainen,et al.  Actin stress fibers – assembly, dynamics and biological roles , 2012, Journal of Cell Science.

[28]  Z. Kam,et al.  Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing , 2011, Nature Cell Biology.

[29]  Albert J. Keung,et al.  Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. , 2010, Annual review of cell and developmental biology.

[30]  Martin A. Schwartz,et al.  Cell adhesion: integrating cytoskeletal dynamics and cellular tension , 2010, Nature Reviews Molecular Cell Biology.

[31]  J. Di Meglio,et al.  Traction forces exerted by epithelial cell sheets , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Todd M. Squires,et al.  Fluid Mechanics of Microrheology , 2010 .

[33]  Matthias P. Lutolf,et al.  Designing materials to direct stem-cell fate , 2009, Nature.

[34]  David A Weitz,et al.  Intracellular transport by active diffusion. , 2009, Trends in cell biology.

[35]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.

[36]  V. Weaver,et al.  Biomechanical regulation of cell orientation and fate , 2008, Oncogene.

[37]  Yaozhi Luo,et al.  A multi-modular tensegrity model of an actin stress fiber. , 2008, Journal of biomechanics.

[38]  Gary Chinga,et al.  Quantification of paper mass distributions within local picking areas , 2007 .

[39]  H. Mellor,et al.  Actin stress fibres , 2007, Journal of Cell Science.

[40]  Shouren Ge,et al.  Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. , 2007, Biomaterials.

[41]  Brenton D. Hoffman,et al.  The consensus mechanics of cultured mammalian cells , 2006, Proceedings of the National Academy of Sciences.

[42]  Eric Mazur,et al.  Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. , 2006, Biophysical journal.

[43]  M. Sheetz,et al.  Local force and geometry sensing regulate cell functions , 2006, Nature Reviews Molecular Cell Biology.

[44]  J. H. Wang,et al.  An Introductory Review of Cell Mechanobiology , 2006, Biomechanics and modeling in mechanobiology.

[45]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[46]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[47]  D. A. Hanson,et al.  Focal adhesion kinase: in command and control of cell motility , 2005, Nature Reviews Molecular Cell Biology.

[48]  Yiider Tseng,et al.  Micromechanical mapping of live cells by multiple-particle-tracking microrheology. , 2002, Biophysical journal.

[49]  Yiider Tseng,et al.  Local dynamics and viscoelastic properties of cell biological systems , 2002 .

[50]  K. Bhadriraju,et al.  Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. , 2002, Experimental cell research.

[51]  Donna J. Webb,et al.  Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again , 2002, Nature Cell Biology.

[52]  Kenneth M. Yamada,et al.  Transmembrane crosstalk between the extracellular matrix and the cytoskeleton , 2001, Nature Reviews Molecular Cell Biology.

[53]  L. Addadi,et al.  Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates , 2001, Nature Cell Biology.

[54]  D. Ingber,et al.  Cellular tensegrity : defining new rules of biological design that govern the cytoskeleton , 2022 .

[55]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[56]  M. Ginsberg,et al.  Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. , 1991, Trends in biochemical sciences.

[57]  S. Albelda,et al.  Integrins and other cell adhesion molecules , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[58]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[59]  J. Vasiliev Spreading of non-transformed and transformed cells. , 1985, Biochimica et biophysica acta.

[60]  M. Schliwa,et al.  Structural interaction of cytoskeletal components , 1981, The Journal of cell biology.