Enhanced hole concentration in strain-compensated BAlN/AlGaN superlattice for deep ultraviolet light-emitting diodes

[1]  Xiaohang Li,et al.  BAlN alloy for enhanced two-dimensional electron gas characteristics of GaN/AlGaN heterostructures , 2020, Journal of Physics D: Applied Physics.

[2]  Zi-hui Zhang,et al.  BAlN for III-nitride UV light-emitting diodes: undoped electron blocking layer , 2020, Journal of Physics D: Applied Physics.

[3]  J. Ryou,et al.  III-Nitride Deep UV LED Without Electron Blocking Layer , 2019, IEEE Photonics Journal.

[4]  Xiaohang Li,et al.  Polarization properties of wurtzite III nitride indicate the principle of polarization engineering , 2018, 1808.07211.

[5]  Young Jae Park,et al.  Nearly-zero valence band and large conduction band offset at BAlN/GaN heterointerface for optical and power device application , 2018, Applied Surface Science.

[6]  Hao-Chung Kuo,et al.  Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency , 2018, Nanoscale Research Letters.

[7]  Y. Taniyasu,et al.  High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content , 2018 .

[8]  Haiding Sun,et al.  Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering , 2017 .

[9]  Young Jae Park,et al.  Band alignment of B0.14Al0.86N/Al0.7Ga0.3N heterojunction , 2017 .

[10]  Muwei Zhang,et al.  Structural and electronic properties of wurtzite BxAl1–xN from first‐principles calculations , 2017 .

[11]  Jianchang Yan,et al.  Effect of AlN buffer on the properties of AlN films grown on sapphire substrate by MOCVD , 2016, 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS).

[12]  J. C. Li,et al.  Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices , 2016, Scientific Reports.

[13]  E. O’Reilly,et al.  Band gap bowing and optical polarization switching in Al 1−x Ga x N alloys , 2015 .

[14]  M. Wraback,et al.  Plasma-assisted molecular beam epitaxy of strain-compensated a-plane InGaN/AlGaN superlattices , 2015 .

[15]  Q. Yan,et al.  AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency , 2014 .

[16]  G. Fan,et al.  Advantages of GaN based light-emitting diodes with p-AlGaN/InGaN superlattice last quantum barrier , 2014 .

[17]  Yen-Kuang Kuo,et al.  Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes , 2013, Photonics West - Optoelectronic Materials and Devices.

[18]  L. Largeau,et al.  Distributed Bragg reflectors based on diluted boron-based BAlN alloys for deep ultraviolet optoelectronic applications , 2012 .

[19]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[20]  Jing Li,et al.  Mg acceptor level in AlN probed by deep ultraviolet photoluminescence , 2003 .

[21]  A. Osinsky,et al.  Experimental and theoretical study of acceptor activation and transport properties in p-type AlxGa1−xN/GaN superlattices , 2000 .

[22]  K. Kumakura,et al.  Enhanced Hole Generation in Mg-Doped AlGaN/GaN Superlattices Due to Piezoelectric Field , 1999 .

[23]  Umesh K. Mishra,et al.  ENHANCED MG DOPING EFFICIENCY IN AL0.2GA0.8N/GAN SUPERLATTICES , 1999 .

[24]  W. Grieshaber,et al.  Enhancement of deep acceptor activation in semiconductors by superlattice doping , 1996 .

[25]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[26]  Nelson,et al.  Consistent structural properties for AlN, GaN, and InN. , 1995, Physical review. B, Condensed matter.

[27]  Xiaohang Li,et al.  Revealing microstructure and dislocation behavior in BAlN/AlGaN heterostructures , 2017 .

[28]  Young Jae Park,et al.  Band alignment of B 0 . 14 Al 0 . 86 N / Al 0 . 7 Ga 0 . 3 N heterojunction , 2017 .

[29]  J. Pankove,et al.  Epitaxially grown AlN and its optical band gap , 1973 .