Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives

Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications. However, several factors affect the level of recombinant protein expression in Chlamydomonas such as enhancer elements, codon dependency, sensitivity to proteases and transformation-associated genotypic modification. The present review outlines a number of strategies to increase protein yields and summarizes recent achievements in algal protein production including biopharmaceuticals such as vaccines, antibodies, hormones and enzymes with implications on health-related approaches. The current status of bioreactor developments for algal culture and the challenges of scale-up and optimization processes are also discussed.

[1]  Claudia Catalanotti,et al.  An Optimized, Chemically Regulated Gene Expression System for Chlamydomonas , 2008, PloS one.

[2]  A. Hiatt,et al.  Production of antibodies in transgenic plants , 1989, Nature.

[3]  제임스 스코트 크라우,et al.  Production of Antibodies , 1942, Nature.

[4]  S. Mayfield,et al.  Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. , 2004, The Plant journal : for cell and molecular biology.

[5]  E. Fukusaki,et al.  Introduction of the archaebacterial geranylgeranyl pyrophosphate synthase gene into Chlamydomonas reinhardtii chloroplast. , 2003, Journal of bioscience and bioengineering.

[6]  Ko Kato,et al.  Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the lac regulation system from Escherichia coli. , 2007, Journal of bioscience and bioengineering.

[7]  D. Drapier,et al.  Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. , 2002, The Plant journal : for cell and molecular biology.

[8]  John R. Benemann,et al.  Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells , 1998, Journal of Applied Phycology.

[9]  P. Jarvis Targeting of nucleus-encoded proteins to chloroplasts in plants. , 2008, The New phytologist.

[10]  S. Streatfield,et al.  Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants , 2001, Trends in Plant Science.

[11]  Zisheng Zhang,et al.  Strategies for high-level recombinant protein expression in transgenic microalgae: a review. , 2010, Biotechnology advances.

[12]  A. Holder,et al.  Malaria vaccines. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Benemann,et al.  Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) , 1998, Photosynthesis Research.

[14]  Xiaofeng Wang,et al.  A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65) , 2008, BMC biotechnology.

[15]  Elizabeth H. Harris,et al.  The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use , 1989 .

[16]  U. Klein,et al.  Functional in vivo analyses of the 3′ flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes , 1993, Molecular and General Genetics MGG.

[17]  G. May,et al.  Re-engineering plant gene targeting. , 2003, Trends in plant science.

[18]  M. Koziel,et al.  Optimizing expression of transgenes with an emphasis on post-transcriptional events , 1996, Plant Molecular Biology.

[19]  K. Kindle Nuclear Transformation: Technology and Applications , 1998 .

[20]  A. Grigoriev,et al.  Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling? , 2004, Trends in genetics : TIG.

[21]  K. Kozminski,et al.  High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. , 1993, Cell motility and the cytoskeleton.

[22]  M. M. Rigano,et al.  Development of plant-based mucosal vaccines against widespread infectious diseases , 2010, Expert review of vaccines.

[23]  K. Kozminski,et al.  High level expression of nonacetylatable α‐tubulin in Chlamydomonas reinhardtii , 1993 .

[24]  Miller Tran,et al.  Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. , 2007, Plant biotechnology journal.

[25]  R. Palmiter,et al.  Rat growth hormone gene introns stimulate nucleosome alignment in vitro and in transgenic mice. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Mayfield,et al.  Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. , 2002, The Plant journal : for cell and molecular biology.

[27]  Toshimichi Ikemura,et al.  Condon usage tabulated from the international DNA sequence databases , 1996, Nucleic Acids Res..

[28]  J. Rochaix,et al.  Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. , 2000, The Plant journal : for cell and molecular biology.

[29]  Richard T. Sayre,et al.  Growth and Heavy Metal Binding Properties of Transgenic Chlamydomonas Expressing a Foreign Metallothionein Gene , 1999 .

[30]  J. Nickelsen Chloroplast RNA-binding proteins , 2003, Current Genetics.

[31]  X. Miao,et al.  The Comparison of Heavy Metal Binding Properties and Tolerance between Transgenic Strains and Wild Type in Chlamydomonas reinhardtii , 2002 .

[32]  N. Ellstrand,et al.  When transgenes wander, should we worry? , 2001, Plant physiology.

[33]  Peter Berthold,et al.  An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. , 2002, Protist.

[34]  René H. Wijffels,et al.  Maximum Photosynthetic Yield of Green Microalgae in Photobioreactors , 2010, Marine Biotechnology.

[35]  M. Schroda RNA silencing in Chlamydomonas: mechanisms and tools , 2006, Current Genetics.

[36]  J. Mellies,et al.  The Escherichia coli proU promoter element and its contribution to osmotically signaled transcription activation , 1994, Journal of bacteriology.

[37]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[38]  R. Bock Transgenic plastids in basic research and plant biotechnology. , 2001, Journal of molecular biology.

[39]  C. Gualerzi,et al.  Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response , 1997, Molecular and General Genetics MGG.

[40]  R. Haselkorn,et al.  Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  I. Maiti,et al.  Strategies for expressing multiple foreign genes in plants as polycistronic constructs , 2001, In Vitro Cellular & Developmental Biology - Plant.

[42]  U. Johanningmeier,et al.  Rapid, ATP-dependent degradation of a truncated D1 protein in the chloroplast. , 2001, European journal of biochemistry.

[43]  J. Rochaix,et al.  Chloroplast site-directed mutagenesis of photosystem I in Chlamydomonas: electron transfer reactions and light sensitivity. , 2000, Biochimie.

[44]  E. Radwanski,et al.  A 3' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. , 1991, The Plant cell.

[45]  S. Mayfield,et al.  Molecular Factors Affecting the Accumulation of Recombinant Proteins in the Chlamydomonas reinhardtii Chloroplast , 2010, Molecular biotechnology.

[46]  Huai-Jen Tsai,et al.  Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. , 2009, Fish & shellfish immunology.

[47]  R. Boehm Bioproduction of Therapeutic Proteins in the 21st Century and the Role of Plants and Plant Cells as Production Platforms , 2007, Annals of the New York Academy of Sciences.

[48]  L. Chatenoud,et al.  Tolerance to islet autoantigens in type 1 diabetes. , 2001, Annual review of immunology.

[49]  F. Lowy,et al.  What determines nasal carriage of Staphylococcus aureus? , 2001, Trends in microbiology.

[50]  M. Goldschmidt-Clermont,et al.  Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. , 1991, Nucleic acids research.

[51]  D. Bentley,et al.  Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. , 2005, Current opinion in cell biology.

[52]  S. Mayfield,et al.  Recent developments in the production of human therapeutic proteins in eukaryotic algae , 2005, Expert opinion on biological therapy.

[53]  P. Lefebvre,et al.  The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation , 1994, Molecular and cellular biology.

[54]  T Gojobori,et al.  Codon usage tabulated from the international DNA sequence databases; its status 1999 , 1999, Nucleic Acids Res..

[55]  S. Mayfield,et al.  Prospects for molecular farming in the green alga Chlamydomonas. , 2004, Current opinion in plant biology.

[56]  Santiago Garcia-Vallvé,et al.  E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI) , 2008, BMC Bioinformatics.

[57]  A. Granell,et al.  In planta production of plant-derived and non-plant-derived adjuvants , 2010, Expert review of vaccines.

[58]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[59]  Feng Chen,et al.  Growing Phototrophic Cells without Light , 2006, Biotechnology Letters.

[60]  J. Rochaix Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii , 1996, Plant Molecular Biology.

[61]  H. Cerutti,et al.  A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. , 1997, Genetics.

[62]  F. Zhao,et al.  Expression of β-carotene hydroxylase gene (crtR-B) from the green alga Haematococcus pluvialis in chloroplasts of Chlamydomonas reinhardtii , 2007, Journal of Applied Phycology.

[63]  E. Weiler,et al.  Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. , 1995, The Plant journal : for cell and molecular biology.

[64]  A. Melis,et al.  Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency , 2009 .

[65]  Stefan Surzycki,et al.  Factors effecting expression of vaccines in microalgae. , 2009, Biologicals : journal of the International Association of Biological Standardization.

[66]  Gilles Peltier,et al.  Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas , 2007, Proceedings of the National Academy of Sciences.

[67]  Yinü Li,et al.  Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. , 2007, Colloids and surfaces. B, Biointerfaces.

[68]  R. Vale,et al.  Circularization of mRNA by eukaryotic translation initiation factors. , 1998, Molecular cell.

[69]  S. Merchant,et al.  Copper Response Element and Crr1-Dependent Ni2+-Responsive Promoter for Induced, Reversible Gene Expression in Chlamydomonas reinhardtii , 2003, Eukaryotic Cell.

[70]  D. Gallie A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. , 1998, Gene.

[71]  S. Driscoll,et al.  Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. , 2003, Plant biotechnology journal.

[72]  S. Brenner,et al.  The evolving roles of alternative splicing. , 2004, Current opinion in structural biology.

[73]  J. Rochaix,et al.  The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas , 1998, Advances in Photosynthesis and Respiration.

[74]  S. Mayfield,et al.  Expression of human antibodies in eukaryotic micro-algae. , 2005, Vaccine.

[75]  Santiago Garcia-Vallvé,et al.  Working toward a new NIOSH. , 1996, Nucleic Acids Res..

[76]  René H. Wijffels,et al.  Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles , 2000, Journal of Applied Phycology.

[77]  Daniel Karcher,et al.  Generation of Chlamydomonas strains that efficiently express nuclear transgenes. , 2009, The Plant journal : for cell and molecular biology.

[78]  Miller Tran,et al.  Chlamydomonas reinhardtii chloroplasts as protein factories. , 2007, Current opinion in biotechnology.

[79]  E. H. Harris,et al.  Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. , 1990, Genetics.

[80]  S. Yoshimura,et al.  Effect of coding regions on chloroplast gene expression in Chlamydomonas reinhardtii. , 2003, Journal of bioscience and bioengineering.

[81]  G. Schuster,et al.  The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability , 2004, Plant Molecular Biology.

[82]  Zou,et al.  In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency , 1999, The Plant journal : for cell and molecular biology.

[83]  Bin Zhou,et al.  Synthesis and assembly of a full‐length human monoclonal antibody in algal chloroplasts , 2009, Biotechnology and bioengineering.

[84]  K. Kindle,et al.  Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain , 1992, Molecular and cellular biology.

[85]  L. Bussmann,et al.  Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems , 2004, Molecular Breeding.

[86]  E. Stoger,et al.  Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies , 2011, Human vaccines.

[87]  S. Ball,et al.  Engineering the Chloroplast Targeted Malarial Vaccine Antigens in Chlamydomonas Starch Granules , 2010, PloS one.

[88]  J. Rochaix,et al.  The bacterial phleomycin resistance gene , 1996 .

[89]  M. Ghirardi,et al.  Effect of Process Variables on Photosynthetic Algal Hydrogen Production , 2004, Biotechnology progress.

[90]  M. Ghirardi,et al.  Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. , 2002 .

[91]  Michael E Webb,et al.  Thiamine biosynthesis in algae is regulated by riboswitches , 2007, Proceedings of the National Academy of Sciences.

[92]  S. Alexandersen,et al.  Foot-and-mouth disease: host range and pathogenesis. , 2005, Current topics in microbiology and immunology.

[93]  M. Montagu,et al.  Assembly of an antibody and its derived antibody fragment inNicotiana andArabidopsis , 1993, Transgenic Research.

[94]  C. Meng,et al.  Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii. , 2005, Acta biochimica et biophysica Sinica.

[95]  S. Rosales-Mendoza,et al.  Two decades of plant-based candidate vaccines: a review of the chimeric protein approaches , 2011, Plant Cell Reports.

[96]  Jianfeng Xu,et al.  Bench to batch: advances in plant cell culture for producing useful products , 2010, Applied Microbiology and Biotechnology.

[97]  R. Léon,et al.  Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis , 2011, Applied Microbiology and Biotechnology.

[98]  W. Campbell,et al.  Codon usage in higher plants, green algae, and cyanobacteria. , 1990, Plant physiology.

[99]  Zhangli Hu,et al.  Expression and function analysis of the metallothionein-like (MT-like) gene from Festuca rubra in Chlamydomonas reinhardtii chloroplast , 2008, Science in China Series C: Life Sciences.

[100]  S. Mayfield,et al.  Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast , 2009, BMC biotechnology.

[101]  K. V. van Wijk,et al.  Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. , 2006, Current opinion in plant biology.

[102]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Dae Sung Lee,et al.  Modeling and Optimization of Photosynthetic Hydrogen Gas Production by Green Alga Chlamydomonas reinhardtii in Sulfur‐Deprived Circumstance , 2006, Biotechnology progress.

[104]  N. D. Silva Anopheline Species Complexes and Malaria Control in Sri Lanka , 2011 .

[105]  Christoph Griesbeck,et al.  Influence of codon bias on the expression of foreign genes in microalgae. , 2007, Advances in experimental medicine and biology.

[106]  T. Foster,et al.  Surface protein adhesins of Staphylococcus aureus. , 1998, Trends in microbiology.

[107]  R. Loppes,et al.  Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii , 1997, Current Genetics.

[108]  U. Klein,et al.  Specific roles of 5′ RNA secondary structures in stabilizing transcripts in chloroplasts , 2005, Nucleic acids research.

[109]  S. Mayfield,et al.  Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5' untranslated region optimization. , 2011, Plant biotechnology journal.

[110]  B. Baxt,et al.  Foot-and-Mouth Disease , 2004, Clinical Microbiology Reviews.

[111]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[112]  O. Marquardt,et al.  Structure and expression of the ornithine decarboxylase gene of Chlamydomonas reinhardtii. , 2004, Microbiological research.

[113]  R. Palmiter,et al.  Building a metal-responsive promoter with synthetic regulatory elements , 1985, Molecular and cellular biology.

[114]  W. Schaffner,et al.  Metal‐dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes. , 1985, The EMBO journal.

[115]  H. Koop,et al.  Development of Novel Types of Plastid Transformation Vectors and Evaluation of Factors Controlling Expression , 2005, Transgenic Research.

[116]  A. van Belkum,et al.  Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks , 1997, Clinical microbiology reviews.

[117]  S. Kim,et al.  Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks , 2011, Applied Microbiology and Biotechnology.

[118]  Martin Fussenegger,et al.  Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. , 2010, Journal of biotechnology.

[119]  L. Kruglyak,et al.  Natural Malaria Infection in Anopheles gambiae Is Regulated by a Single Genomic Control Region , 2006, Science.

[120]  Paul Christou,et al.  Genetic modification: The production of recombinant pharmaceutical proteins in plants , 2003, Nature Reviews Genetics.

[121]  Ovidiu Ruecker,et al.  Strategies to facilitate transgene expression in Chlamydomonas reinhardtii , 2009, Planta.

[122]  U. Klein,et al.  Changes in the 5′-untranslated region of the rbcL gene accelerate transcript degradation more than 50-fold in the chloroplast of Chlamydomonas reinhardtii , 2004, Current Genetics.

[123]  Weltgesundheitsorganisation World malaria report , 2005 .

[124]  Sharma Vp,et al.  Anopheline species complexes & malaria control. , 1997 .

[125]  W. Parrott,et al.  Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode , 1996 .

[126]  U. Conrad,et al.  Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity , 1998, Plant Molecular Biology.

[127]  S. Merchant,et al.  Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. , 1995, The Plant cell.

[128]  S. Mayfield,et al.  Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. , 2010, Plant biotechnology journal.

[129]  Xuhua Xia,et al.  An Improved Implementation of Codon Adaptation Index , 2007, Evolutionary bioinformatics online.

[130]  S. Mayfield,et al.  Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes , 2005, Molecular Genetics and Genomics.

[131]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[132]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[133]  M. Patarroyo,et al.  Malaria vaccines , 2005, Journal of Clinical Immunology.

[134]  B. Ru,et al.  Survival of human metallothionein-2 transplastomic Chlamydomonas reinhardtii to ultraviolet B exposure. , 2006, Acta biochimica et biophysica Sinica.

[135]  Y. Shimizu Microalgal metabolites: a new perspective. , 1996, Annual review of microbiology.

[136]  H. Fukuzawa,et al.  CO(2)-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. , 1999, Plant physiology.