A method using acoustic features to detect inadequate utterances in medical communication

We previously proposed a method that uses grammatical features to detect inadequate utterances of doctors. However, nonverbal information such as that conveyed by gestures, facial expression, and tone of voice are also important. In this paper, we propose a method that uses eight acoustic features to detect three types of mental states (sincerity, confidence, and doubtfulness/acceptance). A Support Vector Machine (SVM) is used to learn these features. Experiments showed that the system's accuracy and recall rates respectively ranged from 0.79-0.91 and 0.80-0.94.