A Discretization-Free Sparse and Parametric Approach for Linear Array Signal Processing

Direction of arrival (DOA) estimation in array processing using uniform/sparse linear arrays is concerned in this paper. While sparse methods via approximate parameter discretization have been popular in the past decade, the discretization may cause problems, e.g., modeling error and increased computations due to dense sampling. In this paper, an exact discretization-free method, named as sparse and parametric approach (SPA), is proposed for uniform and sparse linear arrays. SPA carries out parameter estimation in the continuous range based on well-established covariance fitting criteria and convex optimization. It guarantees to produce a sparse parameter estimate without discretization required by existing sparse methods. Theoretical analysis shows that the SPA parameter estimator is a large-snapshot realization of the maximum likelihood estimator and is statistically consistent (in the number of snapshots) under uncorrelated sources. Other merits of SPA include improved resolution, applicability to arbitrary number of snapshots, robustness to correlation of the sources and no requirement of user-parameters. Numerical simulations are carried out to verify our analysis and demonstrate advantages of SPA compared to existing methods.

[1]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[2]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[3]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[4]  Björn E. Ottersten,et al.  Covariance Matching Estimation Techniques for Array Signal Processing Applications , 1998, Digit. Signal Process..

[5]  Qing Ling,et al.  DOA Estimation Using a Greedy Block Coordinate Descent Algorithm , 2012, IEEE Transactions on Signal Processing.

[6]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[7]  Kaushik Mahata,et al.  Direction-of-Arrival Estimation Using a Mixed $\ell _{2,0}$ Norm Approximation , 2010, IEEE Transactions on Signal Processing.

[8]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[9]  Tianyao Huang,et al.  Adaptive matching pursuit with constrained total least squares , 2012, EURASIP J. Adv. Signal Process..

[10]  Jorma Rissanen,et al.  Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.

[11]  Cishen Zhang,et al.  Robustly Stable Signal Recovery in Compressed Sensing With Structured Matrix Perturbation , 2011, IEEE Transactions on Signal Processing.

[12]  E.J. Candes Compressive Sampling , 2022 .

[13]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[14]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[15]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[16]  P. Rocca,et al.  Directions-of-Arrival Estimation Through Bayesian Compressive Sensing Strategies , 2013, IEEE Transactions on Antennas and Propagation.

[17]  Jian Li,et al.  Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Nan Hu,et al.  DOA Estimation for Sparse Array via Sparse Signal Reconstruction , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[19]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[20]  Håkan Hjalmarsson,et al.  A Note on the SPICE Method , 2012, IEEE Transactions on Signal Processing.

[21]  Jian Li,et al.  New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.

[22]  Geert Leus,et al.  Aliasing-Free Wideband Beamforming Using Sparse Signal Representation , 2011, IEEE Transactions on Signal Processing.

[23]  Qiang Fu,et al.  Compressed Sensing of Complex Sinusoids: An Approach Based on Dictionary Refinement , 2012, IEEE Transactions on Signal Processing.

[24]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[25]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[26]  Ioannis G. Tollis,et al.  Difference bases and sparse sensor arrays , 1993, IEEE Trans. Inf. Theory.

[27]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[28]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[29]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[30]  T. Söderström,et al.  On reparametrization of loss functions used in estimation and the invariance principle , 1989 .

[31]  Zai Yang,et al.  Analysis, algorithms and applications of compressed sensing , 2014 .

[32]  Petre Stoica,et al.  Sparse Estimation of Spectral Lines: Grid Selection Problems and Their Solutions , 2012, IEEE Transactions on Signal Processing.

[33]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[34]  Emre Ertin,et al.  On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection , 2010, IEEE Journal of Selected Topics in Signal Processing.

[35]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[36]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[37]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[38]  Cishen Zhang,et al.  Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference , 2011, IEEE Transactions on Signal Processing.

[39]  Gongguo Tang,et al.  Atomic Norm Denoising With Applications to Line Spectral Estimation , 2012, IEEE Transactions on Signal Processing.

[40]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[41]  Petre Stoica,et al.  Performance study of conditional and unconditional direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[42]  Lihua Xie,et al.  Continuous compressed sensing with a single or multiple measurement vectors , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[43]  Volkan Cevher,et al.  Bearing Estimation via Spatial Sparsity using Compressive Sensing , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[44]  Jian Li,et al.  Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing , 2013, IEEE Transactions on Signal Processing.

[45]  Lihua Xie,et al.  Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.

[46]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[47]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.