暂无分享,去创建一个
Martin Rötteler | Krysta Marie Svore | Alex Bocharov | M. Rötteler | K. Svore | A. Bocharov | Alex Bocharov
[1] D. M. Miller,et al. A Synthesis Method for MVL Reversible Logic , 2004 .
[2] Shawn X. Cui,et al. Universal quantum computation with metaplectic anyons , 2014, 1405.7778.
[3] Michele Mosca,et al. An algorithm for the T-count , 2013, Quantum Inf. Comput..
[4] Igor L. Markov,et al. Constant-optimized quantum circuits for modular multiplication and exponentiation , 2012, Quantum Inf. Comput..
[5] M. Morisue,et al. A novel ternary logic circuit using Josephson junction , 1989 .
[6] D. Browne,et al. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.
[7] Martin Rötteler,et al. Factoring using $2n+2$ qubits with Toffoli based modular multiplication , 2016, Quantum Inf. Comput..
[8] Richard Cleve,et al. Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[9] Barenco,et al. Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[10] Jean Bourgain,et al. Spectral gaps in SU(d) , 2010 .
[11] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[12] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[13] Thomas G. Draper,et al. A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..
[14] Jr.,et al. Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.
[15] Christof Zalka. Fast versions of Shor's quantum factoring algorithm , 1998 .
[16] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[17] Yasuhiro Takahashi,et al. A quantum circuit for shor's factoring algorithm using 2n + 2 qubits , 2006, Quantum Inf. Comput..
[18] Zhenghan Wang,et al. Universal quantum computation with weakly integral anyons , 2014, Quantum Inf. Process..
[19] Alex Bocharov,et al. A note on optimality of quantum circuits over metaplectic basis , 2016, Quantum Inf. Comput..
[20] Mititada Morisue,et al. A Josephson ternary memory circuit , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).
[21] Martin Rötteler,et al. Improved Quantum Ternary Arithmetics , 2015, ArXiv.
[22] Krysta Marie Svore,et al. Efficient approximation of diagonal unitaries over the Clifford+T basis , 2014, Quantum Inf. Comput..
[23] Igor L. Markov,et al. Faster Quantum Number Factoring via Circuit Synthesis , 2013, ArXiv.
[24] Dianne P. O'Leary,et al. Efficient circuits for exact-universal computationwith qudits , 2006, Quantum Inf. Comput..
[25] M B Plenio,et al. Efficient factorization with a single pure qubit and logN mixed qubits. , 2000, Physical review letters.
[26] Shawn X. Cui,et al. Efficient topological compilation for a weakly integral anyonic model , 2015, 1504.03383.
[27] Cody Jones,et al. Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.
[28] B E Anderson,et al. Quantum control in the Cs 6S(1/2) ground manifold using radio-frequency and microwave magnetic fields. , 2013, Physical review letters.
[29] Sean Hallgren,et al. An improved quantum Fourier transform algorithm and applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[30] N. E. Bonesteel,et al. Resources required for topological quantum factoring , 2010, 1002.0537.
[31] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[32] Preskill,et al. Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[33] Thomas G. Draper,et al. A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.
[34] Cody Jones,et al. Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.
[35] Christof Zalka. Shor's algorithm with fewer (pure) qubits , 2006, quant-ph/0601097.
[36] Samuel A. Kutin. Shor's algorithm on a nearest-neighbor machine , 2006 .
[37] Krysta Marie Svore,et al. A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..
[38] R. V. Meter,et al. Fast quantum modular exponentiation , 2004, quant-ph/0408006.
[39] A. Zeilinger,et al. Multi-photon entanglement in high dimensions , 2015, Nature Photonics.
[40] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[41] Mozammel H. A. Khan,et al. Quantum ternary parallel adder/subtractor with partially-look-ahead carry , 2007, J. Syst. Archit..
[42] S. Bravyi,et al. Magic-state distillation with low overhead , 2012, 1209.2426.
[43] M. Mosca,et al. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[44] Mark Howard,et al. Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.
[45] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[46] Stéphane Beauregard. Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..
[47] Andrew D Greentree,et al. Maximizing the Hilbert space for a finite number of distinguishable quantum states. , 2004, Physical review letters.
[48] Umesh V. Vazirani,et al. Quantum complexity theory , 1993, STOC.