Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures

We determine the cost of performing Shor's algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural choice to implement Shor's algorithm on a ternary quantum computer is to translate the entire arithmetic into a ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing Shor's period finding function in the two models. We also highlight the fact that the cost of achieving universality through magic states in MTQC architecture is asymptotically lower than in generic ternary case.

[1]  D. M. Miller,et al.  A Synthesis Method for MVL Reversible Logic , 2004 .

[2]  Shawn X. Cui,et al.  Universal quantum computation with metaplectic anyons , 2014, 1405.7778.

[3]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[4]  Igor L. Markov,et al.  Constant-optimized quantum circuits for modular multiplication and exponentiation , 2012, Quantum Inf. Comput..

[5]  M. Morisue,et al.  A novel ternary logic circuit using Josephson junction , 1989 .

[6]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[7]  Martin Rötteler,et al.  Factoring using $2n+2$ qubits with Toffoli based modular multiplication , 2016, Quantum Inf. Comput..

[8]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[9]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  Jean Bourgain,et al.  Spectral gaps in SU(d) , 2010 .

[11]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[12]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[13]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[14]  Jr.,et al.  Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.

[15]  Christof Zalka Fast versions of Shor's quantum factoring algorithm , 1998 .

[16]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[17]  Yasuhiro Takahashi,et al.  A quantum circuit for shor's factoring algorithm using 2n + 2 qubits , 2006, Quantum Inf. Comput..

[18]  Zhenghan Wang,et al.  Universal quantum computation with weakly integral anyons , 2014, Quantum Inf. Process..

[19]  Alex Bocharov,et al.  A note on optimality of quantum circuits over metaplectic basis , 2016, Quantum Inf. Comput..

[20]  Mititada Morisue,et al.  A Josephson ternary memory circuit , 1998, Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138).

[21]  Martin Rötteler,et al.  Improved Quantum Ternary Arithmetics , 2015, ArXiv.

[22]  Krysta Marie Svore,et al.  Efficient approximation of diagonal unitaries over the Clifford+T basis , 2014, Quantum Inf. Comput..

[23]  Igor L. Markov,et al.  Faster Quantum Number Factoring via Circuit Synthesis , 2013, ArXiv.

[24]  Dianne P. O'Leary,et al.  Efficient circuits for exact-universal computationwith qudits , 2006, Quantum Inf. Comput..

[25]  M B Plenio,et al.  Efficient factorization with a single pure qubit and logN mixed qubits. , 2000, Physical review letters.

[26]  Shawn X. Cui,et al.  Efficient topological compilation for a weakly integral anyonic model , 2015, 1504.03383.

[27]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[28]  B E Anderson,et al.  Quantum control in the Cs 6S(1/2) ground manifold using radio-frequency and microwave magnetic fields. , 2013, Physical review letters.

[29]  Sean Hallgren,et al.  An improved quantum Fourier transform algorithm and applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  N. E. Bonesteel,et al.  Resources required for topological quantum factoring , 2010, 1002.0537.

[31]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[32]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[33]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[34]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[35]  Christof Zalka Shor's algorithm with fewer (pure) qubits , 2006, quant-ph/0601097.

[36]  Samuel A. Kutin Shor's algorithm on a nearest-neighbor machine , 2006 .

[37]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[38]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[39]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[40]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[41]  Mozammel H. A. Khan,et al.  Quantum ternary parallel adder/subtractor with partially-look-ahead carry , 2007, J. Syst. Archit..

[42]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[43]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[44]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[45]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[46]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[47]  Andrew D Greentree,et al.  Maximizing the Hilbert space for a finite number of distinguishable quantum states. , 2004, Physical review letters.

[48]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.