Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies

Abstract Response to external stimuli is a fundamental and intrinsic behavior of living systems. There has been increasing interest for designing and constructing responsive polymeric superstructures by self-assembly. Stimuli-induced self-assembly and post-assembly triggering strategies provide an alternative approach for the manipulation of self-assembled architectures of either biological or synthetic polymeric materials. Stimuli-induced structural transformations may produce ensembles with new topologies or materials with exceptionally complex features inaccessible via conventional self-assembly processes. This is in contrast to materials that simply undergo stimuli-induced degradation, or disassembly processes. Since a variety of cellular processes depend on responses to environmental stimuli that lead to more complexity and increased function, and are related to structural transitions over the nano- to microscale, insights into stimuli-triggered morphogenesis can further deepen our understanding of cellular behaviors. Indeed, an understanding of these processes will likely inspire scientists to develop materials with advanced and tailored architectures for biosensing, diagnosis and therapy as well as other biomedical applications. Herein, we highlight state-of-the-art achievements in the stimuli-triggered structural manipulation of polymer assemblies. Furthermore, future developments in this nascent and growing field are briefly discussed.

[1]  Jianbin Huang,et al.  Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. , 2003, Angewandte Chemie.

[2]  P. G. de Gennes,et al.  Conformations of Polymers Attached to an Interface , 1980 .

[3]  Merdol Ibrahim,et al.  Selective enhancement of gene transfer by steroid-mediated gene delivery , 2001, Nature Biotechnology.

[4]  R C Dunn,et al.  Calcium regulation of nuclear pore permeability. , 1998, Cell calcium.

[5]  Eunji Lee,et al.  Tubular stacking of water-soluble toroids triggered by guest encapsulation. , 2009, Journal of the American Chemical Society.

[6]  N. Hirokawa,et al.  Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons , 1992, Nature.

[7]  A. Shen,et al.  A stable flow-induced structured phase in wormlike micellar solutions , 2011 .

[8]  U. Aebi,et al.  Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. , 1999, Journal of molecular biology.

[9]  Ueli Aebi,et al.  The nuclear pore complex: nucleocytoplasmic transport and beyond , 2003, Nature Reviews Molecular Cell Biology.

[10]  U. Kutay,et al.  Transport between the cell nucleus and the cytoplasm. , 1999, Annual review of cell and developmental biology.

[11]  V. Bloomfield DNA condensation by multivalent cations. , 1997, Biopolymers.

[12]  R Balhorn,et al.  AFM analysis of DNA-protamine complexes bound to mica. , 1997, Nucleic acids research.

[13]  V. Rotello,et al.  Recognition-induced transformation of microspheres into vesicles: morphology and size control. , 2004, Journal of the American Chemical Society.

[14]  Alshakim Nelson,et al.  Stimuli-responsive polymers: engineering interactions. , 2008, Nature materials.

[15]  D. Schmaljohann Thermo- and pH-responsive polymers in drug delivery. , 2006, Advanced drug delivery reviews.

[16]  Ho-Joong Kim,et al.  Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. , 2011, Accounts of chemical research.

[17]  Zhi-da Wang,et al.  Temperature-induced reversible transformation between toroidal and cylindrical assemblies under shear flow , 2010 .

[18]  Eunji Lee,et al.  Reversible scrolling of two-dimensional sheets from the self-assembly of laterally grafted amphiphilic rods. , 2009, Angewandte Chemie.

[19]  D. M. Morré,et al.  Cell Surface NADH Oxidases (ECTO-NOX Proteins) with Roles in Cancer, Cellular Time-keeping, Growth, Aging and Neurodegenerative Diseases , 2003, Free radical research.

[20]  Richard A. Evans,et al.  Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond , 2010 .

[21]  Meredith A Mintzer,et al.  Nonviral vectors for gene delivery. , 2009, Chemical reviews.

[22]  J. Noolandi,et al.  Interfacial properties of immiscible homopolymer blends in the presence of block copolymers , 1982 .

[23]  P. Nielsen,et al.  Gene delivery by a steroid‐peptide nucleic acid conjugate , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  U. Boehm,et al.  Cellular responses to interferon-gamma. , 1997, Annual review of immunology.

[25]  J. Noolandi,et al.  Theory of block copolymer micelles in solution , 1983 .

[26]  Peiffer,et al.  Pressure-induced crossover from good to poor solvent behavior for polyethylene oxide in water. , 1992, Physical review letters.

[27]  A. Ajayaghosh,et al.  Self-assembly of tripodal squaraines: Cation-assisted expression of molecular chirality and change from spherical to helical morphology. , 2007, Angewandte Chemie.

[28]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[29]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[30]  A. L. Demirel,et al.  Poly(2-oxazoline)s as Smart Bioinspired Polymers. , 2010, Macromolecular rapid communications.

[31]  J. Olmsted,et al.  Microtubule-associated proteins. , 1986, Annual review of cell biology.

[32]  V. Shahin The nuclear barrier is structurally and functionally highly responsive to glucocorticoids , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  M Ferrari,et al.  Size and shape effects in the biodistribution of intravascularly injected particles. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Xiaogong Wang,et al.  Colloidal Sphere Formation, H-Aggregation, and Photoresponsive Properties of an Amphiphilic Random Copolymer Bearing Branched Azo Side Chains , 2006 .

[35]  T. Nylander,et al.  Condensation of DNA using poly(amido amine) dendrimers: effect of salt concentration on aggregate morphology , 2011 .

[36]  N. Rapoport Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery , 2007 .

[37]  Zhong Shen,et al.  Synthesis and characterization of PNIPAM‐b‐(PEA‐g‐PDEA) double hydrophilic graft copolymer , 2008 .

[38]  D. Pochan,et al.  Helix self-assembly through the coiling of cylindrical micelles. , 2007, Soft matter.

[39]  Lisa Pakstis,et al.  Stimuli-responsive polypeptide vesicles by conformation-specific assembly , 2004, Nature materials.

[40]  H. Oberleithner,et al.  ATP-Induced Shape Change of Nuclear Pores Visualized with the Atomic Force Microscope , 1998, The Journal of Membrane Biology.

[41]  K. Zhu,et al.  Hydrogen Bonding-Induced Transformation of Network Aggregates into Vesicles - A Potential Method for the Preparation of Composite Vesicles , 2007 .

[42]  B. P. Yu,et al.  Cellular defenses against damage from reactive oxygen species. , 1994, Physiological reviews.

[43]  Ryan C. Hayward,et al.  Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process , 2010 .

[44]  A. Kabanov,et al.  Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. , 2009, Angewandte Chemie.

[45]  Stephen Z. D. Cheng,et al.  Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution. , 2007, Journal of the American Chemical Society.

[46]  Lifeng Zhang,et al.  Formation of crew‐cut aggregates of various morphologies from amphiphilic block copolymers in solution , 1998 .

[47]  Yue Zhao,et al.  Photocontrollable block copolymer micelles: what can we control? , 2009 .

[48]  S. Stupp,et al.  Spontaneous and X-ray–Triggered Crystallization at Long Range in Self-Assembling Filament Networks , 2010, Science.

[49]  Guojun Liu,et al.  ABC triblock copolymer hamburger-like micelles, segmented cylinders, and Janus particles , 2010 .

[50]  E. A. Boucher,et al.  Properties of aqueous salt solutions of poly(ethylene oxide) , 1982 .

[51]  A Klug,et al.  From macromolecules to biological assemblies , 1983, Bioscience reports.

[52]  S. Stupp,et al.  Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. , 2008, Journal of the American Chemical Society.

[53]  Hua Wei,et al.  Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers , 2009 .

[54]  K. Yoshikawa,et al.  Interpolyelectrolyte Complexes Formed by DNA and Astramol Poly(propylene imine) Dendrimers , 2000 .

[55]  Jianfang Wang,et al.  Nanopore extrusion-induced transition from spherical to cylindrical block copolymer micelles. , 2009, Journal of the American Chemical Society.

[56]  David Putnam,et al.  Polymers for gene delivery across length scales , 2006, Nature materials.

[57]  Samir Mitragotri,et al.  Polymer particles that switch shape in response to a stimulus , 2010, Proceedings of the National Academy of Sciences.

[58]  So young Kim,et al.  Vesicle-to-spherical micelle-to-tubular nanostructure transition of monomethoxy-poly(ethylene glycol)-poly(trimethylene carbonate) diblock copolymer. , 2008, The journal of physical chemistry. B.

[59]  U. Schubert,et al.  Tuning block copolymer micelles by metal–ligand interactions , 2008 .

[60]  Andrea J. Liu,et al.  Spotted vesicles, striped micelles, and responsive Janus assemblies induced by ligand binding , 2009, Nature materials.

[61]  K. Zhu,et al.  Versatile preparation of fluorescent particles based on polyphosphazenes: from micro- to nanoscale. , 2007, Small.

[62]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[63]  K. Yoshikawa,et al.  Structure of collapsed persistent macromolecule: Toroid vs. spherical globule , 1997 .

[64]  Frank S Bates,et al.  On the Origins of Morphological Complexity in Block Copolymer Surfactants , 2003, Science.

[65]  D. Pochan,et al.  Origins of toroidal micelle formation through charged triblock copolymer self-assembly , 2009 .

[66]  Yue Zhao,et al.  Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles , 2006 .

[67]  E. Mendes,et al.  Vesicle to micelle transitions in surfactant mixtures induced by shear , 1997 .

[68]  H. Ringsdorf,et al.  Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes , 1988 .

[69]  Ho-Joong Kim,et al.  Stimuli-responsive gels from reversible coordination polymers. , 2005, Angewandte Chemie.

[70]  G. Fleming,et al.  Synthetic micelle sensitive to IR light via a two-photon process. , 2005, Journal of the American Chemical Society.

[71]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[72]  K. Zhu,et al.  Temperature-Triggered Nanosphere Formation Through Self-Assembly of Amphiphilic Polyphosphazene , 2006 .

[73]  J. Allard,et al.  A new two-photon-sensitive block copolymer nanocarrier. , 2009, Angewandte Chemie.

[74]  R. Iwaura,et al.  Reversible photochemical conversion of helicity in self-assembled nanofibers from a 1,omega-thymidylic acid appended bolaamphiphile. , 2006, Angewandte Chemie.

[75]  R. Liggins,et al.  Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. , 2002, Advanced drug delivery reviews.

[76]  R. Nolte,et al.  Helical superstructures from charged Poly(styrene)-Poly(isocyanodipeptide) block copolymers , 1998, Science.

[77]  V. Rotello,et al.  Recognition‐Controlled Assembly of Nanoparticles Using Photochemically Crosslinked Recognition‐Induced Polymersomes , 2006 .

[78]  U. Aebi,et al.  Molecular dissection of the nuclear pore complex. , 1996, Critical reviews in biochemistry and molecular biology.

[79]  Guojun Liu,et al.  Self-assembled ABC triblock copolymer double and triple helices. , 2009, Angewandte Chemie.

[80]  D. Putnam,et al.  Polymer systems for gene delivery - Past, present, and future , 2007 .

[81]  A. Blume,et al.  Temperature-Induced Micelle-Vesicle Transitions in DMPC−SDS and DMPC−DTAB Mixtures Studied by Calorimetry and Dynamic Light Scattering , 2002 .

[82]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[83]  J. Atkinson,et al.  T-cell regulation: with complements from innate immunity , 2007, Nature Reviews Immunology.

[84]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[85]  Vladimir P Torchilin,et al.  Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. , 2004, Advanced drug delivery reviews.

[86]  S. Diamond,et al.  Pulmonary delivery of adenovirus vector formulated with dexamethasone–spermine facilitates homologous vector re-administration , 2007, Gene Therapy.

[87]  Daniel W. Pack,et al.  Design and development of polymers for gene delivery , 2005, Nature Reviews Drug Discovery.

[88]  Michael Börsch,et al.  Engineering the structural properties of DNA block copolymer micelles by molecular recognition. , 2007, Angewandte Chemie.

[89]  K. Kataoka,et al.  Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications , 2006 .

[90]  So-Jung Park,et al.  Morphological transitions of block-copolymer bilayers via nanoparticle clustering. , 2010, Small.

[91]  M. Arotçaréna,et al.  Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. , 2002, Journal of the American Chemical Society.

[92]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[93]  Didier Merlin,et al.  Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. , 2010, Nature materials.

[94]  Xiaogong Wang,et al.  Synthesis of Aminoazobenzene‐Containing Diblock Copolymer and Photoinduced Deformation Behavior of its Micelle‐Like Aggregates , 2007 .

[95]  A. Eisenberg,et al.  Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers , 1998 .

[96]  Craig J Hawker,et al.  Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. , 2006, Chemical Society reviews.

[97]  Youli Li,et al.  Bundling with X-rays , 2010, Science.

[98]  Richard Hoogenboom,et al.  Poly(2-oxazoline)s: a polymer class with numerous potential applications. , 2009, Angewandte Chemie.

[99]  Sergiy Minko,et al.  Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems , 2010 .

[100]  A J Koster,et al.  Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[101]  D. Pochan,et al.  Using polyelectrolyte block copolymers to tune nanostructure assembly , 2006 .

[102]  Ashutosh Chilkoti,et al.  Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. , 2002, Advanced drug delivery reviews.

[103]  Yue Zhao,et al.  A new design for light-breakable polymer micelles. , 2005, Journal of the American Chemical Society.

[104]  R. Steinman,et al.  The dendritic cell system and its role in immunogenicity. , 1991, Annual review of immunology.

[105]  Peter X Ma,et al.  Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. , 2010, Nano today.

[106]  Eunji Lee,et al.  Reversible transformation of helical coils and straight rods in cylindrical assembly of elliptical macrocycles. , 2009, Journal of the American Chemical Society.

[107]  John Samuel,et al.  Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. , 2002, Advanced drug delivery reviews.

[108]  Tae Gwan Park,et al.  Molecular design of functional polymers for gene therapy , 2007 .

[109]  R. O’Reilly,et al.  Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer. , 2010, Chemical communications.

[110]  D. Needleman,et al.  Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  G. Zimmerman,et al.  The Photochemical Isomerization of Azobenzene1 , 1958 .

[112]  Axel H. E. Müller,et al.  Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities , 2007 .

[113]  Yongfeng Zhou,et al.  Supramolecular Self-Assembly of Macroscopic Tubes , 2004, Science.

[114]  Y. Maitani,et al.  Calcium enhanced delivery of tetraarginine-PEG-lipid-coated DNA/protamine complexes. , 2009, International journal of pharmaceutics.

[115]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[116]  A. M. Rush,et al.  Programmable shape-shifting micelles. , 2010, Angewandte Chemie.

[117]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[118]  Y. Anraku,et al.  Monodispersed polymeric nanocapsules: spontaneous evolution and morphology transition from reducible hetero-PEG PICmicelles by controlled degradation. , 2009, Journal of the American Chemical Society.

[119]  Grosberg AYu,et al.  On the toroidal condensed state of closed circular DNA. , 1985 .

[120]  Tommy Nylander,et al.  Condensing DNA with poly(amido amine) dendrimers of different generations: means of controlling aggregate morphology , 2009, Soft Matter.

[121]  Paul Rochon,et al.  Photoinduced motions in azo-containing polymers. , 2002, Chemical reviews.

[122]  K. Zhu,et al.  Morphology modulation of polymeric assemblies by guest drug molecules: TEM study and compatibility evaluation , 2009 .

[123]  R. Maccioni,et al.  Role of microtubule-associated proteins in the control of microtubule assembly. , 1995, Physiological reviews.

[124]  A. Herrmann,et al.  DNA-templated synthesis in three dimensions: Introducing a micellar scaffold for organic reactions. , 2006, Angewandte Chemie.

[125]  Guojun Liu,et al.  Polymer nano- and microspheres with bumpy and chain-segregated surfaces. , 2005, Journal of the American Chemical Society.

[126]  A. Mata,et al.  Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes , 2008, Science.

[127]  T. Nylander,et al.  Dynamic light scattering and fluorescence study of the interaction between double-stranded DNA and poly(amido amine) dendrimers. , 2007, Biomacromolecules.

[128]  D. Clapham,et al.  Conformational States of the Nuclear Pore Complex Induced by Depletion of Nuclear Ca2+ Stores , 1996, Science.

[129]  Y. Lim,et al.  Supramolecular capsules with gated pores from an amphiphilic rod assembly. , 2008, Angewandte Chemie.

[130]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[131]  A. Saffari,et al.  Sphere-to-wormlike network transition of block copolymer micelles containing cdSe quantum dots in the corona , 2010 .

[132]  Mitchell A. Winnik,et al.  Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture , 2007, Science.

[133]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[134]  K. Zhu,et al.  Solvent Controlled Multi‐Morphological Self‐Assembly of Amphiphilic Graft Copolymers , 2005 .

[135]  Martin Müller,et al.  Oxidation-responsive polymeric vesicles , 2004, Nature materials.

[136]  Eunji Lee,et al.  Controlled Self-Assembly of Asymmetric Dumbbell-Shaped Rod Amphiphiles: Transition from Toroids to Planar Nets , 2007 .

[137]  T. Park,et al.  Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(D,L-lactic-co-glycolic acid) and hydrophilic oligonucleotides. , 2001, Bioconjugate chemistry.

[138]  S. Förster,et al.  From self-organizing polymers to nanohybrid and biomaterials. , 2002, Angewandte Chemie.

[139]  Kandaswamy Vijayan,et al.  Micelles of Different Morphologies—Advantages of Worm-like Filomicelles of PEO-PCL in Paclitaxel Delivery , 2007, Pharmaceutical Research.

[140]  T. Hellweg,et al.  Flow-Induced Ordering in Cubic Gels Formed by P2VP-b-PEO-b-P-(GME-co-EGE) Triblock Terpolymer Micelles: A Rheo-SANS Study , 2010 .

[141]  M. Pitsikalis,et al.  Reversible morphological transitions of polystyrene-b-polyisoprene micelles , 2006 .

[142]  D. Pochan,et al.  Toroidal Triblock Copolymer Assemblies , 2004, Science.

[143]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[144]  Eunji Lee,et al.  Aqueous nanofibers with switchable chirality formed of self-assembled dumbbell-shaped rod amphiphiles. , 2009, Chemical communications.

[145]  S. Mitragotri,et al.  Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. , 2010, Macromolecular rapid communications.

[146]  A. Eisenberg,et al.  Control of Morphology through Polymer−Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers , 1997 .

[147]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[148]  K. Marx,et al.  Evidence for hydrated spermidine-calf thymus DNA toruses organized by circumferential DNA wrapping. , 1983, Nucleic acids research.

[149]  R. B. Grubbs,et al.  Reversible restructuring of aqueous block copolymer assemblies through stimulus-induced changes in amphiphilicity. , 2008, Journal of the American Chemical Society.

[150]  H. Choi,et al.  Design of rapidly assembling supramolecular systems responsive to synchronized stimuli , 2006 .

[151]  S. Jenekhe,et al.  Self-assembly of ordered microporous materials from rod-coil block copolymers , 1999, Science.

[152]  T. Lodge,et al.  Lower Critical Solution Temperature (LCST) Phase Behavior of Poly(ethylene oxide) in Ionic Liquids , 2010 .

[153]  Ronald A. Milligan,et al.  Architecture and design of the nuclear pore complex , 1992, Cell.

[154]  Hsin‐Lung Chen,et al.  Dendrimer-induced DNA bending , 2011 .

[155]  Chen Wang,et al.  The observation of the local ordering characteristics of spermidine- condensed DNA: atomic force microscopy and polarizing microscopy studies , 1998, Nucleic Acids Res..

[156]  Adam E. Smith,et al.  Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization , 2010 .

[157]  E. Bakota,et al.  Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. , 2007, Journal of the American Chemical Society.

[158]  S. Yagai,et al.  Recent advances in photoresponsive supramolecular self-assemblies. , 2008, Chemical Society reviews.

[159]  D. Pochan,et al.  Nanoparticles with tunable internal structure from triblock copolymers of PAA-b-PMA-b-PS. , 2008, Nano letters.

[160]  Grosberg AYu,et al.  On the compact form of linear duplex DNA: globular states of the uniform elastic (persistent) macromolecule. , 1986, Journal of biomolecular structure & dynamics.

[161]  H. Orihara,et al.  Three-dimensional observation of an immiscible polymer blend subjected to a step electric field under shear flow. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[162]  Timothy P. Lodge,et al.  Tethered chains in polymer microstructures , 1992 .

[163]  Sheng Zhong,et al.  Block Copolymer Assembly via Kinetic Control , 2007, Science.

[164]  D. Pochan,et al.  Controlled stacking of charged block copolymer micelles. , 2007, Langmuir.

[165]  D. Scherman,et al.  Thermoresponsive surfaces for cell culture and enzyme-free cell detachment , 2010 .

[166]  Lifeng Zhang,et al.  Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions , 1996 .

[167]  S. Stupp,et al.  A torsional strain mechanism to tune pitch in supramolecular helices. , 2007, Angewandte Chemie.

[168]  Haizhou Yu,et al.  Effect of Shear Flow on the Formation of Ring-Shaped ABA Amphiphilic Triblock Copolymer Micelles , 2009 .

[169]  Haitao Liu,et al.  Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. , 2006, Nano letters.

[170]  Marie-Hélène Dufresne,et al.  Block copolymer micelles: preparation, characterization and application in drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[171]  E. W. Meijer,et al.  Magnetic deformation of self-assembled sexithiophene spherical nanocapsules. , 2005, Journal of the American Chemical Society.

[172]  U Aebi,et al.  The nuclear pore complex: from molecular architecture to functional dynamics. , 1999, Current opinion in cell biology.

[173]  J. Israelachvili Intermolecular and surface forces , 1985 .

[174]  V. Rotello,et al.  Molecular recognition induced self-assembly of diblock copolymers: microspheres to vesicles. , 2010, Macromolecular bioscience.

[175]  Youqing Shen,et al.  Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers , 2010 .

[176]  A. Eisenberg,et al.  Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions , 1996 .

[177]  Yin Dou,et al.  Nanoassemblies from homostructured polypeptides as efficient nanoplatforms for oral drug delivery. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[178]  Eunji Lee,et al.  Interconversion of planar networks and vesicles triggered by temperature. , 2010, Macromolecular rapid communications.

[179]  Eunji Lee,et al.  Self-assembling molecular dumbbells: from nanohelices to nanocapsules triggered by guest intercalation. , 2006, Angewandte Chemie.

[180]  Joel A Swanson,et al.  Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. , 2003, Advanced drug delivery reviews.

[181]  Xi Zhang,et al.  Photoresponsive Supramolecular Amphiphiles for Controlled Self‐Assembly of Nanofibers and Vesicles , 2010, Advanced materials.

[182]  Aaron Klug,et al.  From Macromolecules to Biological Assemblies (Nobel Lecture) , 1983 .

[183]  M. Ataman Properties of aqueous salt solutions of poly(ethylene oxide). Cloud points, θ temperatures , 1987 .

[184]  Kui Yu,et al.  Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers , 1996, Science.

[185]  Samir Mitragotri,et al.  Role of target geometry in phagocytosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Zhibo Li,et al.  Multicompartment Micelles from ABC Miktoarm Stars in Water , 2004, Science.

[187]  A. Kishimura,et al.  Spontaneous formation of giant unilamellar vesicles from microdroplets of a polyion complex by thermally induced phase separation. , 2009, Angewandte Chemie.

[188]  F. Du,et al.  Facile control of the self-assembled structures of polylysines having pendent mannose groups via pH and surfactant. , 2010, Chemical communications.

[189]  J. Parquette,et al.  Controllable peptide-dendron self-assembly: interconversion of nanotubes and fibrillar nanostructures. , 2009, Angewandte Chemie.

[190]  Krzysztof Matyjaszewski,et al.  Light-induced reversible formation of polymeric micelles. , 2007, Angewandte Chemie.

[191]  E. W. Meijer,et al.  Polystyrene-Dendrimer Amphiphilic Block Copolymers with a Generation-Dependent Aggregation , 1995, Science.

[192]  T. Nylander,et al.  Watching DNA condensation induced by poly(amido amine) dendrimers with time-resolved cryo-TEM. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[193]  P. Cullis,et al.  Calcium enhances the transfection potency of plasmid DNA-cationic liposome complexes. , 2000, Biochimica et biophysica acta.

[194]  P. Gennes Scaling theory of polymer adsorption , 1976 .

[195]  E. Furst,et al.  Electric Field‐Directed Convective Assembly of Ellipsoidal Colloidal Particles to Create Optically and Mechanically Anisotropic Thin Films , 2009 .

[196]  K. Yoshikawa,et al.  Time-dependent complex formation of dendritic poly(L-lysine) with plasmid DNA and correlation with in vitro transfection efficiencies. , 2003, Organic & biomolecular chemistry.

[197]  Eunji Lee,et al.  Lateral association of cylindrical nanofibers into flat ribbons triggered by "molecular glue". , 2008, Angewandte Chemie.

[198]  Zhiqiang Fan,et al.  Micellar Morphologies of Poly(ε-caprolactone)-b-poly(ethylene oxide) Block Copolymers in Water with a Crystalline Core , 2007 .

[199]  S. Ganta,et al.  A review of stimuli-responsive nanocarriers for drug and gene delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[200]  F. Bates,et al.  Cryogenic Transmission Electron Microscopy (Cryo-TEM) of Micelles and Vesicles Formed in Water by Poly(ethylene oxide)-Based Block Copolymers , 2002 .

[201]  M. C. Stuart,et al.  Redox responsive molecular assemblies based on metallic coordination polymers , 2010 .

[202]  Yuichi Yamasaki,et al.  PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. , 2008, Journal of the American Chemical Society.

[203]  Katsuhiro Maeda,et al.  Memory of macromolecular helicity assisted by interaction with achiral small molecules , 1999, Nature.

[204]  H. Clausen‐Schaumann,et al.  Mechanochemistry: the mechanical activation of covalent bonds. , 2005, Chemical reviews.

[205]  H. Hotani,et al.  The projection domain of MAP4 suppresses the microtubule-bundling activity of the microtubule-binding domain. , 2002, Journal of molecular biology.

[206]  Xiaogong Wang,et al.  Photoinduced deformation of amphiphilic azo polymer colloidal spheres. , 2005, Journal of the American Chemical Society.

[207]  U. Aebi,et al.  The nuclear pore complex: a jack of all trades? , 2004, Trends in biochemical sciences.

[208]  Ru Cheng,et al.  Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. , 2009, Angewandte Chemie.

[209]  Mary M. Caruso,et al.  Mechanically-induced chemical changes in polymeric materials. , 2009, Chemical reviews.

[210]  V. Shahin,et al.  Nuclear envelope barrier leak induced by dexamethasone , 2006, Journal of cellular physiology.

[211]  I. Manners,et al.  Nanofiber micelles from the self-assembly of block copolymers. , 2010, Trends in biotechnology.

[212]  Teruo Okano,et al.  Polymeric micelles as new drug carriers , 1996 .

[213]  E. Feener,et al.  Cleavage of disulfide bonds in endocytosed macromolecules. A processing not associated with lysosomes or endosomes. , 1990, The Journal of biological chemistry.

[214]  C. Coutelle,et al.  Calcium ions as efficient cofactor of polycation-mediated gene transfer. , 1999, Biochimica et biophysica acta.

[215]  Zhiqiang Fan,et al.  Inorganic‐Salt‐Induced Morphological Transformation of Semicrystalline Micelles of PCL‐b‐PEO Block Copolymer in Aqueous Solution , 2010 .

[216]  Minhyung Lee,et al.  Effect of Dexamethasone Preincubation on Polymer-Mediated Gene Delivery , 2005 .

[217]  H. Schneider,et al.  Supramolecular interactions in chemomechanical polymers. , 2009, Accounts of chemical research.