Numerical calculation of energy deposition by broad high-energy electron beams.

The feasibility is demonstrated of a numerical method to calculate dose deposition by broad high-energy electron beams in homogeneous matter or in heterogeneous matter in which the heterogeneities are arranged in slabs perpendicular to the beam axis. The method is based only on the basic physical interaction processes of high-energy electrons and matter. The method is an extended version of the phase space time evolution method as described by Cordaro and Zucker (1971). The calculated depth-dose curves, energy spectra and angular distributions agree very well with results of the extensive class II Monte Carlo calculations of Andreo and Brahme (1984) and Andreo (1985), but require much less computer time: typically 3 minutes on a VAX 785 with floating point accelerator. This demonstrates the power of a numerical method in comparison with Monte Carlo methods.

[1]  P. Storchi,et al.  The in-air scattering of clinical electron beams as produced by accelerators with scanning beams and diaphragm collimators. , 1987, Physics in medicine and biology.

[2]  S. Klevenhagen The Computation of Dose Distribution in Electron Beam Radiotherapy, Alan E. Nahum (Ed.). Umea University, New York (1985) , 1987 .

[3]  R. K. Bull,et al.  Radiation dosimetry: Electron beams with energies between 1 and 50 MeV: ICRU Report 35; 157 pp.; 85 figures; US $23.00. , 1986 .

[4]  Pascal R.M. Storchi,et al.  SCIENTIFIC NOTE: On a numerical approach of the pencil beam model , 1985 .

[5]  Anders Brahme,et al.  Restricted Energy-Loss Straggling and Multiple Scattering of Electrons in Mixed Monte Carlo Procedures , 1984 .

[6]  P. Almond,et al.  Electron beam dose calculations , 1981, Physics in medicine and biology.

[7]  I. Lax,et al.  Electron beam dose planning using discrete Gaussian beams. Mathematical background. , 1981, Acta radiologica. Oncology.

[8]  E. Epp,et al.  The energy spectrum of electrons in water irradiated with 10- to 20- MeV electron beams. , 1972, Radiation research.

[9]  M. Zucker,et al.  A Method for Solving Time-Dependent Electron Transport Problems , 1971 .

[10]  W. T. Scott,et al.  The Theory of Small-Angle Multiple Scattering of Fast Charged Particles , 1963 .

[11]  O. Blunck,et al.  Zum Energieverlust energiereicher Elektronen in dünnen Schichten , 1951 .

[12]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen II Mehrfach-und Vielfachstreuung , 1948 .

[13]  Gert Moliere,et al.  Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld , 1947 .

[14]  B. Rossi,et al.  Cosmic-Ray Theory , 1941 .

[15]  J. L. Saunderson,et al.  Multiple Scattering of Electrons , 1940 .

[16]  C. Møller Zur Theorie des Durchgangs schneller Elektronen durch Materie , 1932 .