The role of pattern-recognition receptors in innate immunity: update on Toll-like

[1]  E. Alnemri,et al.  The AIM2 inflammasome is critical for innate immunity against Francisella tularensis , 2010, Nature Immunology.

[2]  A. Iwasaki,et al.  Influenza virus activates inflammasomes through intracellular M2 channel , 2010, Nature Immunology.

[3]  E. Pålsson-McDermott,et al.  Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21 , 2010, Nature Immunology.

[4]  C. Coban,et al.  Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. , 2010, Cell host & microbe.

[5]  K. Moore,et al.  CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer , 2009, Nature Immunology.

[6]  S. Paik,et al.  Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. , 2009, Immunity.

[7]  S. Akira,et al.  HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses , 2009, Nature.

[8]  G. Barber,et al.  STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity , 2009, Nature.

[9]  R. Locksley,et al.  Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands , 2009, Nature Immunology.

[10]  M. Gilliet,et al.  Self-RNA–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8 , 2009, The Journal of experimental medicine.

[11]  Shao-Cong Sun,et al.  Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production , 2009, Nature Immunology.

[12]  S. Nagata,et al.  Regulation of the innate immune response by threonine-phosphatase of Eyes absent , 2009, Nature.

[13]  S. Akira,et al.  TANK is a negative regulator of Toll-like receptor signaling and critical for preventing autoimmune nephritis , 2009, Nature Immunology.

[14]  R. Steinman,et al.  Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant , 2009, The Journal of experimental medicine.

[15]  Jonathan C. Fuller,et al.  Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response , 2009, Nature Genetics.

[16]  A. Dalpke,et al.  Identification of an N-Terminal Recognition Site in TLR9 That Contributes to CpG-DNA-Mediated Receptor Activation1 , 2009, The Journal of Immunology.

[17]  M. Tsan,et al.  Heat shock proteins and immune system , 2009, Journal of leukocyte biology.

[18]  S. Akira,et al.  Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells , 2009, Nature Immunology.

[19]  Hayyoung Lee,et al.  The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex , 2009, Nature.

[20]  R. Webby,et al.  The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. , 2009, Immunity.

[21]  J. Ting,et al.  The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. , 2009, Immunity.

[22]  Zhijian J. Chen,et al.  Ubiquitylation in innate and adaptive immunity , 2009, Nature.

[23]  F. Martinon,et al.  The inflammasomes: guardians of the body. , 2009, Annual review of immunology.

[24]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[25]  Hao Wu,et al.  Structural basis for recognition of diubiquitins by NEMO. , 2009, Molecular cell.

[26]  G. Núñez,et al.  The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis , 2009, Nature Immunology.

[27]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[28]  Akiko Iwasaki,et al.  Inflammasome recognition of influenza virus is essential for adaptive immune responses , 2009, The Journal of experimental medicine.

[29]  M. Yoneyama,et al.  RNA recognition and signal transduction by RIG‐I‐like receptors , 2009, Immunological reviews.

[30]  S. Akira,et al.  TLR7-dependent and FcγR-independent production of type I interferon in experimental mouse lupus , 2008, The Journal of experimental medicine.

[31]  S. Akira,et al.  Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production , 2008, Nature.

[32]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[33]  Shizuo Akira,et al.  Toll‐like Receptor and RIG‐1‐like Receptor Signaling , 2008, Annals of the New York Academy of Sciences.

[34]  Y. Seto,et al.  A single base mutation in the PRAT4A gene reveals differential interaction of PRAT4A with Toll-like receptors. , 2008, International immunology.

[35]  H. Ploegh,et al.  Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9 , 2008, Nature Immunology.

[36]  B. Beutler,et al.  Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger , 2008, Proceedings of the National Academy of Sciences.

[37]  Zheng‐gang Liu,et al.  The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors , 2008, Nature Immunology.

[38]  T. Heidmann,et al.  Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity , 2008, Cell.

[39]  Jie-Oh Lee,et al.  Structures of the toll-like receptor family and its ligand complexes. , 2008, Immunity.

[40]  K. Miyake,et al.  TLR accessory molecules. , 2008, Current opinion in immunology.

[41]  John E. Connolly,et al.  Yaa autoimmune phenotypes are conferred by overexpression of TLR7 , 2008, European journal of immunology.

[42]  Hiroshi Kiyono,et al.  Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5 , 2008, Nature Immunology.

[43]  Osamu Takeuchi,et al.  Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2 , 2008, Nature Immunology.

[44]  Xuetao Cao,et al.  Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1 , 2008, Nature Immunology.

[45]  Arthur S Slutsky,et al.  Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury , 2008, Cell.

[46]  Weiwen Deng,et al.  TRIM30α negatively regulates TLR-mediated NF-κB activation by targeting TAB2 and TAB3 for degradation , 2008, Nature Immunology.

[47]  K. Miyake,et al.  Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. , 2008, Biochemical and biophysical research communications.

[48]  E. Latz,et al.  The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation. , 2008, Immunity.

[49]  K. Miyake,et al.  Cathepsins are required for Toll-like receptor 9 responses. , 2008, Biochemical and biophysical research communications.

[50]  H. Ploegh,et al.  UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes , 2008, Nature.

[51]  S. Akira,et al.  TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β , 2008, Nature Immunology.

[52]  C. Coban,et al.  TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines , 2008, Nature.

[53]  K. Miyazono,et al.  Cathepsin K-Dependent Toll-Like Receptor 9 Signaling Revealed in Experimental Arthritis , 2008, Science.

[54]  K. Ishii,et al.  Cutting Edge: Cooperation of IPS-1- and TRIF-Dependent Pathways in Poly IC-Enhanced Antibody Production and Cytotoxic T Cell Responses , 2008, The Journal of Immunology.

[55]  E. Pietras,et al.  A Deubiquitinase That Regulates Type I Interferon Production , 2007, Science.

[56]  K. Takatsu,et al.  A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses , 2007, The Journal of experimental medicine.

[57]  S. Akira,et al.  Lymphocytoid Choriomeningitis Virus Activates Plasmacytoid Dendritic Cells and Induces a Cytotoxic T-Cell Response via MyD88 , 2007, Journal of Virology.

[58]  Shohei Koyama,et al.  Differential Role of TLR- and RLR-Signaling in the Immune Responses to Influenza A Virus Infection and Vaccination , 2007, The Journal of Immunology.

[59]  S. Paik,et al.  Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide , 2007, Cell.

[60]  A. Smahi,et al.  TLR3 Deficiency in Patients with Herpes Simplex Encephalitis , 2007, Science.

[61]  Hayyoung Lee,et al.  Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran , 2007, Cell.

[62]  J. Lieberman,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus , 2007, Nature Genetics.

[63]  K. Honda,et al.  DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response , 2007, Nature.

[64]  D. Lin,et al.  Fen1 mutations result in autoimmunity, chronic inflammation and cancers , 2007, Nature Medicine.

[65]  T. Kaisho,et al.  PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit , 2007, Nature Immunology.

[66]  H. Ploegh,et al.  The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling , 2007, The Journal of cell biology.

[67]  L. Audoly,et al.  Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE , 2007, Nature Immunology.

[68]  A. Marshak‐Rothstein,et al.  Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. , 2007, Annual review of immunology.

[69]  A. Iwasaki,et al.  In Brief , 2007, Nature Reviews Immunology.

[70]  P. Srivastava,et al.  Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. , 2007, Immunity.

[71]  Thomas Lengauer,et al.  A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 , 2007, Nature Genetics.

[72]  H. Yoshikawa,et al.  Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages , 2006, Nature.

[73]  Michael Karin,et al.  Regulation and Function of IKK and IKK-Related Kinases , 2006, Science's STKE.

[74]  J. Casanova,et al.  Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency , 2006, Science.

[75]  A. Bowie,et al.  The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling , 2006, Nature Immunology.

[76]  J. Shupe,et al.  Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. , 2006, Immunity.

[77]  D. Baltimore,et al.  NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[78]  K. Ishii,et al.  Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling , 2006, Nature Immunology.

[79]  D. Barnes,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus , 2006, Nature Genetics.

[80]  A. Satterthwaite,et al.  Autoreactive B Cell Responses to RNA-Related Antigens Due to TLR7 Gene Duplication , 2006, Science.

[81]  R. Medzhitov,et al.  Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor Signaling , 2006, Cell.

[82]  Kathleen A. Kennedy,et al.  Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4 , 2006, Nature.

[83]  S. Akira,et al.  The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  L. Glimcher,et al.  Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells , 2006, Nature Immunology.

[85]  D. Davies,et al.  The dsRNA binding site of human Toll‐like receptor 3 , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[87]  Shizuo Akira,et al.  Innate immune recognition of viral infection , 2006, Nature Immunology.

[88]  S. Grinstein,et al.  The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9 , 2006, Nature Immunology.

[89]  M. Mann,et al.  Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6 , 2006, Nature.

[90]  A. Shahangian,et al.  Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response , 2006, Nature.

[91]  S. Akira,et al.  Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8 , 2005, The Journal of experimental medicine.

[92]  G. Prestwich,et al.  Regulation of lung injury and repair by Toll-like receptors and hyaluronan , 2005, Nature Medicine.

[93]  Marian F Young,et al.  The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. , 2005, The Journal of clinical investigation.

[94]  I. Wilson,et al.  Crystal Structure of Human Toll-Like Receptor 3 (TLR3) Ectodomain , 2005, Science.

[95]  J. Andersen,et al.  TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein , 2005, Science.

[96]  K. Honda,et al.  Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction , 2005, Nature.

[97]  K. Tracey,et al.  The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion , 2005, The Journal of experimental medicine.

[98]  Tak W. Mak,et al.  Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors , 2005, Nature.

[99]  R. Flavell,et al.  Toll-like receptor 3 promotes cross-priming to virus-infected cells , 2005, Nature.

[100]  D. Golenbock,et al.  Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. , 2005, The Journal of clinical investigation.

[101]  P. Blackshear,et al.  The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis , 2004, Arthritis research & therapy.

[102]  S. Akira,et al.  Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ , 2004, Nature.

[103]  K. Ishii,et al.  Toll-Like Receptor 9 Signaling Activates NF-κB through IFN Regulatory Factor-8/IFN Consensus Sequence Binding Protein in Dendritic Cells1 , 2004, The Journal of Immunology.

[104]  R. Flavell,et al.  Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Greenblatt,et al.  A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria , 2004, Science.

[106]  L. Kwak,et al.  Toll-Like Receptor 4-Dependent Activation of Dendritic Cells by β-Defensin 2 , 2002, Science.

[107]  D. Golenbock,et al.  Cutting Edge: The Immunostimulatory Activity of the Lung Surfactant Protein-A Involves Toll-Like Receptor 41 , 2002, The Journal of Immunology.

[108]  S. Akira,et al.  Toll-like receptors: critical proteins linking innate and acquired immunity , 2001, Nature Immunology.

[109]  Jerome F. Strauss,et al.  The Extra Domain A of Fibronectin Activates Toll-like Receptor 4* , 2001, The Journal of Biological Chemistry.

[110]  T. Möröy,et al.  Features of systemic lupus erythematosus in Dnase1-deficient mice , 2000, Nature Genetics.

[111]  K. Tracey,et al.  Targeting HMGB1 in inflammation. , 2010, Biochimica et biophysica acta.

[112]  M. Karin,et al.  Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines , 2010, Nature Immunology.

[113]  Wan-Wan Lin,et al.  Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis , 2009, Nature.

[114]  Zachary D. Smith,et al.  Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses , 2009 .

[115]  D. Underhill,et al.  Fungal Recognition by TLR2 and Dectin-1. , 2008, Handbook of experimental pharmacology.

[116]  R. Medzhitov,et al.  Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. , 2006, Immunity.

[117]  R. Medzhitov,et al.  Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA , 2006, Nature Immunology.

[118]  H. Kuwata,et al.  IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. , 2006, Immunity.

[119]  C. Janeway,et al.  Innate immune recognition. , 2002, Annual review of immunology.