Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow

This paper presents two new scaling algorithms for the minimum cost network flow problem, one a primal cycle canceling algorithm, the other a dual cut canceling algorithm. Both algorithms scale a relaxed optimality parameter, and create a second, inner relaxation. The primal algorithm uses the inner relaxation to cancel a most negative node-disjoint family of cycles w.r.t. the scaled parameter, the dual algorithm uses it to cancel most positive cuts w.r.t. the scaled parameter. We show that in a network with n nodes and m arcs, both algorithms need to cancel only Omn objects per scaling phase. Furthermore, we show how to efficiently implement both algorithms to yield weakly polynomial running times that are as fast as any other cycle or cut canceling algorithms. Our algorithms have potential practical advantages compared to some other canceling algorithms as well. Along the way, we give a comprehensive survey of cycle and cut canceling algorithms for min-cost flow. We also clarify the formal duality between cycles and cuts.

[1]  S. Thomas McCormick,et al.  Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks , 2000, SODA '00.

[2]  Satoru Iwata,et al.  A faster algorithm for minimum cost submodular flows , 1998, SODA '98.

[3]  M. Klein A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .

[4]  Refael Hassin Algorithms for the minimum cost circulation problem based on maximizing the mean improvement , 1992, Oper. Res. Lett..

[5]  Ronald D. Armstrong,et al.  A new strongly polynomial dual network simplex algorithm , 1997, Math. Program..

[6]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[7]  Tomasz Radzik Newton's method for fractional combinatorial optimization , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[8]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[9]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[10]  Norman Zadeh,et al.  A bad network problem for the simplex method and other minimum cost flow algorithms , 1973, Math. Program..

[11]  S. Thomas McCormick,et al.  Computing Maximum Mean Cuts , 1994, Discret. Appl. Math..

[12]  Robert E. Tarjan,et al.  A faster deterministic maximum flow algorithm , 1992, SODA '92.

[13]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[14]  Dimitri P. Bertsekas,et al.  Distributed Asynchronous Relaxation Methods for Linear Network Flow Problems , 1987 .

[15]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[16]  S. Fujishige,et al.  A PRIMAL ALGORITHM FOR THE SUBMODULAR FLOW PROBLEM WITH MINIMUM-MEAN CYCLE SELECTION , 1988 .

[17]  Andrew V. Goldberg,et al.  Tight bounds on the number of minimum-mean cycle cancellations and related results , 1991, SODA '91.

[18]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[19]  Éva Tardos,et al.  Note on Weintraub's Minimum-Cost Circulation Algorithm , 1989, SIAM J. Comput..

[20]  T. L. Saaty,et al.  Finite graphs and networks : an introduction with applications , 1967 .

[21]  Kurt Mehlhorn,et al.  Faster algorithms for the shortest path problem , 1990, JACM.

[22]  Robert E. Tarjan,et al.  Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..

[23]  Éva Tardos,et al.  Polynomial dual network simplex algorithms , 2011, Math. Program..

[24]  James B. Orlin,et al.  A polynomial time primal network simplex algorithm for minimum cost flows , 1996, SODA '96.

[25]  A. Weintraub A Primal Algorithm to Solve Network Flow Problems with Convex Costs , 1974 .

[26]  D. R. Fulkerson,et al.  An Out-of-Kilter Method for Minimal-Cost Flow Problems , 1960 .

[27]  Donald Goldfarb,et al.  Anti-stalling pivot rules for the network simplex algorithm , 1990, Networks.

[28]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[29]  Tomasz Radzik,et al.  Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization , 1993 .

[30]  G. Minty Monotone networks , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  Gernot M. Engel,et al.  Diagonal similarity and equivalence for matrices over groups with 0 , 1975 .

[32]  B. Gassner Cycling in the transportation problem , 1964 .

[33]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[34]  Satoru Iwata,et al.  A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem , 1999, IPCO.

[35]  Andrew V. Goldberg,et al.  Finding Minimum-Cost Circulations by Successive Approximation , 1990, Math. Oper. Res..

[36]  V G Andrew,et al.  AN EFFICIENT IMPLEMENTATION OF A SCALING MINIMUM-COST FLOW ALGORITHM , 1997 .

[37]  S. Thomas McCormick,et al.  Polynomial Methods for Separable Convex Optimization in Unimodular Linear Spaces with Applications , 1997, SIAM J. Comput..

[38]  P. Pardalos Complexity in numerical optimization , 1993 .

[39]  S. Thomas McCormick,et al.  Canceling most helpful total cuts for minimum cost network flow , 1993, Networks.

[40]  Robert E. Tarjan,et al.  Improved Time Bounds for the Maximum Flow Problem Improved Time Bounds for the Maximum Flow Problem Improved Time Bounds for the Maximum Flow Problem , 2008 .

[41]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[42]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[43]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[44]  Maurice Queyranne,et al.  Theoretical Efficiency of the Algorithm "Capacity" for the Maximum Flow Problem , 1980, Math. Oper. Res..

[45]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[46]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[47]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[48]  Li Liu,et al.  An Experimental Implementation of the Dual Cancel and Tighten Algorithm for Minimum-Cost Network Flow , 1991, Network Flows And Matching.

[49]  Refael Hassin,et al.  The minimum cost flow problem: A unifying approach to dual algorithms and a new tree-search algorithm , 1983, Math. Program..

[50]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[51]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[52]  S. Thomas McCormick,et al.  Approximate binary search algorithms for mean cuts and cycles , 1993, Oper. Res. Lett..

[53]  S. Thomas McCormick,et al.  Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow , 1993, Discret. Appl. Math..

[54]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[55]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[56]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..

[57]  James B. Orlin A Faster Strongly Polynomial Minimum Cost Flow Algorithm , 1993, Oper. Res..

[58]  Frank Harary,et al.  Finite Graphs and Networks, An Introduction with Applications. , 1967 .

[59]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum cycle mean problems , 1988 .

[60]  Steven J. Phillips,et al.  Online load balancing and network flow , 1993, STOC.