Parametric AFEM for geometric evolution equation and coupled fluid -membrane interaction
暂无分享,去创建一个
[1] L. Formaggia,et al. Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .
[2] Daniele Boffi,et al. Stability and geometric conservation laws for ALE formulations , 2004 .
[3] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[4] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[5] David J. Steigmann,et al. Irreducible function bases for simple fluids and liquid crystal films , 2003 .
[6] Robert E. Rudd,et al. On the variational theory of cell-membrane equilibria , 2003 .
[7] Martin Rumpf,et al. A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..
[8] H. Piaggio. Differential Geometry of Curves and Surfaces , 1952, Nature.
[9] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[10] Ricardo H. Nochetto,et al. A finite element method for surface diffusion: the parametric case , 2005 .
[11] K. Roberts,et al. Thesis , 2002 .
[12] Carl Ollivier-Gooch,et al. Tetrahedral mesh improvement using swapping and smoothing , 1997 .
[13] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[14] James T. Jenkins,et al. The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .
[15] J. Jenkins,et al. Static equilibrium configurations of a model red blood cell , 1977, Journal of mathematical biology.
[16] David J. Steigmann,et al. Fluid Films with Curvature Elasticity , 1999 .
[17] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[18] David Rubin,et al. Introduction to Continuum Mechanics , 2009 .
[19] A. Schmidt,et al. Design of Adaptive Finite Element Software , 2005 .
[20] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[21] Hantaek Bae. Navier-Stokes equations , 1992 .
[22] V. Rovenski,et al. Differential Geometry of Curves and Surfaces , 1952, Nature.
[23] Gerhard Dziuk,et al. Evolution of Elastic Curves in Rn: Existence and Computation , 2002, SIAM J. Math. Anal..
[24] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[25] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[26] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[27] Thierry Aubin,et al. Some Nonlinear Problems in Riemannian Geometry , 1998 .
[28] Pingwen Zhang,et al. Continuum theory of a moving membrane. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] Gunay Dogan,et al. A Variational Shape Optimization Framework for Image Segmentation , 2006 .
[30] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[31] S. Antman. Nonlinear problems of elasticity , 1994 .
[32] Raluca E. Rusu. An algorithm for the elastic flow of surfaces , 2005 .
[33] W. Mullins. Two‐Dimensional Motion of Idealized Grain Boundaries , 1956 .
[34] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[35] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[36] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[37] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[38] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[39] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[40] Davis,et al. Morphological instability in epitaxially strained dislocation-free solid films: Nonlinear evolution. , 1993, Physical review. B, Condensed matter.
[41] I. Holopainen. Riemannian Geometry , 1927, Nature.
[42] W. Tiller,et al. Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion , 1972 .
[43] A. Peirce. Computer Methods in Applied Mechanics and Engineering , 2010 .
[44] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[45] Torsten Möller,et al. Curves and Surfaces , 2010, Lecture Notes in Computer Science.
[46] P. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.
[47] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[48] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[49] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[50] Lucia Gastaldi,et al. A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..
[51] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[52] Ricardo H. Nochetto,et al. A Posteriori Error Analysis for the Mean Curvature Flow of Graphs , 2005, SIAM J. Numer. Anal..
[53] Seifert,et al. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[54] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[55] Watt W. Webb,et al. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.
[56] 儀我 美一. Surface evolution equations : a level set approach , 2006 .
[57] Alan Demlow,et al. An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..
[58] H. Samelson,et al. Shorter Note: Orientability of Hypersurfaces in R n , 1969 .
[59] Eberhard Bänsch,et al. Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.
[60] Daniel,et al. Design of Finite Element Tools for Coupled Surface and Volume Meshes , 2008 .
[61] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[62] Daniel Coutand,et al. Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .
[63] G. Dziuk,et al. An algorithm for evolutionary surfaces , 1990 .