Direct computation of optimal PID controllers

Optimal additional zero locations of continuous-time systems with p free zeros, some fixed zeros and distinct, fixed poles tracking a reference impulse response are derived in this paper based on general closed-form impulse responses. The method is subsequently applied to compute the optimal zero locations of PID controllers for continuous-time systems.

[1]  Ben M. Chen,et al.  Simultaneous finite- and infinite-zero assignments of linear systems , 1995, Autom..

[2]  R. Longchamp,et al.  Influence of Zero Locations on the Number of Extrema in the Step Response , 1991, 1991 American Control Conference.

[3]  Vassilis L. Syrmos On the finite transmission zero assignment problem , 1993, Autom..

[4]  Oscar D. Crisalle,et al.  Influence of zero locations on the number of step-response extrema , 1993, Autom..

[5]  Anna Soffia Analytic Expressions of Transfer Function Responses and Choice of Numerator Coefficients (Zeros) , 1996 .

[6]  A. S. Hauksdóttir Optimal zeros for model reduction of continuous-time systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[7]  Suhada Jayasuriya,et al.  On the Synthesis of Compensators for Nonovershooting Step Response , 1996 .

[8]  Chang-Jia Fang,et al.  Nonovershooting and monotone nondecreasing step responses of a third-order SISO linear system , 1997, IEEE Trans. Autom. Control..

[9]  Frank L. Lewis,et al.  Transmission Zero Assignment using Semistate Descriptions , 1992 .

[10]  A. O'Dwyer,et al.  PID compensation of time delayed processes 1998-2002: a survey , 2003, Proceedings of the 2003 American Control Conference, 2003..

[11]  A. S. Hauksdóttir Optimal zero locations of continuous-time systems with distinct poles tracking first-order step responses , 2002 .

[12]  A. S. Hauksdóttir,et al.  Closed-form expressions of transfer function responses , 2003, Proceedings of the 2003 American Control Conference, 2003..

[13]  Antonis I. G. Vardulakis,et al.  Zero placement and the ‘ squaring down ’ problem: a polynomial matrix approach , 1980 .

[14]  W. Brogan Modern Control Theory , 1971 .