Electrolytic transport through a synthetic nanometer-diameter pore.
暂无分享,去创建一个
Chuen Ho | Gregory Timp | Rui Qiao | Narayana R Aluru | Aveek Chatterjee | N. Aluru | G. Timp | J. Heng | R. Qiao | C. Ho | R. Timp | Jiunn B Heng | Rolf J Timp | A. Chatterjee | Chuen Ho
[1] H. Schwarz,et al. Electrochemistry of capillary systems with narrow pores III. Electrical conductivity1Zur Elektrochemie feinporiger Kapillarsysteme, III. Elektrische Leitfähigkeit, Ber. Bunsenges. Phys. Chemie (Z. Elektrochem.) 55 (1951) 295–307.1 , 1998 .
[2] T. Straatsma,et al. THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .
[3] D Henderson,et al. Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics. , 2001, Biophysical journal.
[4] Liu,et al. Wetting transitions in a cylindrical pore. , 1990, Physical review letters.
[5] J. Rasaiah,et al. MOBILITY AND SOLVATION OF IONS IN CHANNELS , 1996 .
[6] T. Darden,et al. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .
[7] J. Rasaiah,et al. Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C , 1998 .
[8] Physical and molecular basis of ion channel gating: Can electrostatic interactions close the ion channel? , 1998, Neurophysiology.
[9] Z. Siwy,et al. Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.
[10] J. Israelachvili. Intermolecular and surface forces , 1985 .
[11] Bocquet,et al. Metastability and nucleation in capillary condensation , 2000, Physical review letters.
[12] C. Dekker,et al. Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.
[13] J. Sonnefeld. Determination of surface charge density parameters of silicon nitride , 1996 .
[14] Michael J. Aziz,et al. Ion-beam sculpting at nanometre length scales , 2001, Nature.
[15] Rashid Bashir,et al. DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .
[16] Matsuhiko Nishizawa,et al. Controlling Ion‐Transport Selectivity in Gold Nanotubule Membranes , 2001 .
[17] S. Milonjić,et al. Surface properties of silicon nitride powders , 2002 .
[18] J. Rasaiah,et al. Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 °C† , 1996 .
[19] B. Roux,et al. A microscopic view of ion conduction through the K+ channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[20] K. Schulten,et al. Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.
[21] Graham R. Smith,et al. The nicotinic acetylcholine receptor: from molecular model to single-channel conductance , 2000, European Biophysics Journal.
[22] N. Aluru,et al. Ion concentrations and velocity profiles in nanochannel electroosmotic flows , 2003 .
[23] A. Finkelstein. The Ubiquitous Presence of Channels with Wide Lumens and Their Gating by Voltage a , 1985, Annals of the New York Academy of Sciences.
[24] K. B. Oldham,et al. Fundamentals of electrochemical science , 1993 .
[25] William A. Goddard,et al. The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for α‐ and β‐Si3N4 , 1992 .
[26] Berk Hess,et al. GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .
[27] C. Dekker,et al. Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.
[28] A. Seidel-Morgenstern,et al. Mathematical modelling of adsorption and transport processes in capillary electrochromatography: Open‐tubular geometry , 2003, Electrophoresis.
[29] Slow kinetics of capillary condensation in confined geometry: experiment and theory , 2001, cond-mat/0109040.
[30] H. D. Cochran,et al. Molecular simulation of aqueous electrolytes in model silica nanochannels , 2003 .