On the study of fusion techniques for bad geological remote sensing image

[1]  Hassan Ghassemian,et al.  Remote Sensing Image Fusion Using Ripplet Transform and Compressed Sensing , 2015, IEEE Geoscience and Remote Sensing Letters.

[2]  Alejandro Castillo Atoche,et al.  An improved RBR image reconstruction architecture based on super-systolic techniques , 2014, J. Ambient Intell. Humaniz. Comput..

[3]  Joaquim Filipe,et al.  Advances in technologies and techniques for ambient intelligence , 2014, J. Ambient Intell. Humaniz. Comput..

[4]  Vladimir Risojevic,et al.  Fusion of Global and Local Descriptors for Remote Sensing Image Classification , 2013, IEEE Geoscience and Remote Sensing Letters.

[5]  S. Ashraf,et al.  Image data fusion for the remote sensing of freshwater environments , 2012 .

[6]  Eva Cerezo,et al.  Emotional facial sensing and multimodal fusion in a continuous 2D affective space , 2012, J. Ambient Intell. Humaniz. Comput..

[7]  Luciano Alparone,et al.  Remote sensing image fusion using the curvelet transform , 2007, Inf. Fusion.

[8]  Lorenzo Bruzzone,et al.  Image fusion techniques for remote sensing applications , 2002, Inf. Fusion.

[9]  Chun-Liang Chien,et al.  Image Fusion With No Gamut Problem by Improved Nonlinear IHS Transforms for Remote Sensing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Zhang Hai-ta,et al.  Target Recognition of Hyperspectral Images Band Selection Method , 2013 .

[11]  X. Qin,et al.  Quality Evaluation of Different Remote Sensing Image Fusion Method , 2013 .

[12]  Xu Hui-xi Accuracy Evaluation of Remote Sensing Image Fusion Method , 2009 .

[13]  Yao Jing,et al.  Remote sensing image fusion based on IHS transform and principal component analysis transform , 2009 .