Nanoliter/Picoliter Scale Fluidic Systems for Food Safety

[1]  S Arana,et al.  Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. , 2009, Biosensors & bioelectronics.

[2]  Megha Gandhi,et al.  Listeria: A foodborne pathogen that knows how to survive. , 2007, International journal of food microbiology.

[3]  K. Mogensen,et al.  Performance of an in‐plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices , 2002, Electrophoresis.

[4]  B. Roques,et al.  Detection and Quantification of Botulinum Neurotoxin Type A by a Novel Rapid In Vitro Fluorimetric Assay , 2009, Applied and Environmental Microbiology.

[5]  S. Park,et al.  Escherichia coli O157:H7 As An Emerging Foodborne Pathogen: A Literature Review , 2001, Critical reviews in food science and nutrition.

[6]  R. Bashir,et al.  Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips. , 2007, Lab on a chip.

[7]  Yordan Kostov,et al.  Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). , 2010, Lab on a chip.

[8]  G. Johansson,et al.  An immunological interleukine-6 capacitive biosensor using perturbation with a potentiostatic step. , 1998, Biosensors & bioelectronics.

[9]  Martin A M Gijs,et al.  Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell. , 2008, Lab on a chip.

[10]  Noo Li Jeon,et al.  Vascular mimetics based on microfluidics for imaging the leukocyte--endothelial inflammatory response. , 2007, Lab on a chip.

[11]  E. Alocilja,et al.  A high density microelectrode array biosensor for detection of E. coli O157:H7. , 2005, Biosensors & bioelectronics.

[12]  Jürgen Popp,et al.  A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. , 2009, Biosensors & bioelectronics.

[13]  N. Dovichi,et al.  Low-cost laser-induced fluorescence detector for micellar capillary zone electrophoresis: Detection at the zeptomol level of tetramethylrhodamine thiocarbamyl amino acid derivatives , 1992 .

[14]  Deyong He,et al.  Chemiluminescence microflow injection analysis system on a chip for the determination of nitrite in food , 2007 .

[15]  Igor L. Medintz,et al.  Sensors for detecting biological agents , 2008 .

[16]  Qi Zhang,et al.  Optical and electrochemical detection techniques for cell-based microfluidic systems , 2006, Analytical and bioanalytical chemistry.

[17]  Peter H. Dykstra,et al.  A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis. , 2012, Biosensors & bioelectronics.

[18]  Salvatore Fanali,et al.  Food analysis: a continuous challenge for miniaturized separation techniques. , 2009, Journal of separation science.

[19]  D J Beebe,et al.  Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. , 2007, Theriogenology.

[20]  J. Metzger,et al.  Detection of Clostridium botulinum type G toxin by enzyme-linked immunosorbent assay , 1981, Applied and environmental microbiology.

[21]  Maryam Tabrizian,et al.  Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors. , 2011, Analytical chemistry.

[22]  C. Kaspar,et al.  16 Methods for Detecting Microbial Pathogens in Food and Water , 1990, Methods in Microbiology.

[23]  K. Jordan,et al.  Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni , 2006, Journal of applied microbiology.

[24]  Jessica Melin,et al.  Microfluidic large-scale integration: the evolution of design rules for biological automation. , 2007, Annual review of biophysics and biomolecular structure.

[25]  S A Sundberg,et al.  High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. , 2000, Current opinion in biotechnology.

[26]  James N. Turner,et al.  Upstream Migration of Xylella fastidiosa via Pilus-Driven Twitching Motility , 2005, Journal of bacteriology.

[27]  Zachary Gagnon,et al.  Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection , 2005, Electrophoresis.

[28]  Donald Wlodkowic,et al.  Miniaturized Embryo Array for Automated Trapping, Immobilization and Microperfusion of Zebrafish Embryos , 2012, PloS one.

[29]  Le Deng,et al.  In situ continuous detection of bacteria on the surface of solid medium with a Bulk Acoustic Wave-Impedance Sensor , 1996 .

[30]  Steven J. Lehotay,et al.  Application of gas chromatography in food analysis , 2002 .

[31]  Walter Fontana,et al.  Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. , 2010, Lab on a chip.

[32]  D Reinhard,et al.  Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[33]  D. Beebe,et al.  Fundamentals of microfluidic cell culture in controlled microenvironments. , 2010, Chemical Society reviews.

[34]  Rashid Bashir,et al.  Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. , 2008, Biotechnology advances.

[35]  Christophe A. Marquette,et al.  Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. , 2008, Biosensors & bioelectronics.

[36]  Fan Yang,et al.  An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics. , 2011, Biomicrofluidics.

[37]  V. Parpura,et al.  Detection of botulinum toxins: micromechanical and fluorescence-based sensors. , 2005, Croatian medical journal.

[38]  J. Ploem,et al.  Simultaneous detection of two cell populations by two-colour fluorescence and application to the recognition of B-cell determinants , 1976, Nature.

[39]  Jerry Westerweel,et al.  Zebrafish embryo development in a microfluidic flow-through system. , 2011, Lab on a chip.

[40]  Koji Suzuki,et al.  Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. , 2006, Analytical chemistry.

[41]  Yanbin Li,et al.  Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. , 2007, Biosensors & bioelectronics.

[42]  Peter Ertl,et al.  Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. , 2007, Lab on a chip.

[43]  Yibin Ying,et al.  Subtractive Inhibition Assay for the Detection of E. coli O157:H7 Using Surface Plasmon Resonance , 2011, Sensors.

[44]  Zbigniew Stojek,et al.  Voltammetry in solutions of low ionic strength. Electrochemical and analytical aspects , 1999 .

[45]  Susan Z. Hua,et al.  On-chip microfluidic biosensor for bacterial detection and identification , 2007 .

[46]  Matthew M. Crane,et al.  Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans , 2008, Nature Methods.

[47]  Laurent Ségalat,et al.  High‐throughput screening and small animal models, where are we? , 2010, British journal of pharmacology.

[48]  Tejal A Desai,et al.  Microscale multilayer cocultures for biomimetic blood vessels. , 2005, Journal of biomedical materials research. Part A.

[49]  Janko Auerswald,et al.  Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk. , 2009, Lab on a chip.

[50]  J. Savéant,et al.  Kinetics of electron transfer to organic molecules at solid electrodes in organic media , 1983 .

[51]  Bryan Lincoln,et al.  Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. , 2008, Lab on a chip.

[52]  Peter J. Asiello,et al.  Miniaturized isothermal nucleic acid amplification, a review. , 2011, Lab on a chip.

[53]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[54]  P. Craw,et al.  Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. , 2012, Lab on a chip.

[55]  V. Pizziconi,et al.  A microflow amperometric glucose biosensor. , 1997, Biosensors & bioelectronics.

[56]  M. Tietjen,et al.  Salmonellae and food safety. , 1995, Critical reviews in microbiology.

[57]  Nobuyasu Yamaguchi,et al.  Rapid, Semiautomated Quantification of Bacterial Cells in Freshwater by Using a Microfluidic Device for On-Chip Staining and Counting , 2010, Applied and Environmental Microbiology.

[58]  S. Notermans,et al.  The enzyme-linked immunosorbent assay (ELISA) for the detection and determination of Clostridium botulinum toxins A, B, and E. , 1982, Methods in enzymology.

[59]  David J Beebe,et al.  Bead-based microfluidic toxin sensor integrating evaporative signal amplification. , 2008, Lab on a chip.

[60]  T. Park,et al.  Microfluidic cell disruption system employing a magnetically actuated diaphragm , 2008, Electrophoresis.

[61]  O. Wolfbeis,et al.  Capacitive Approach To Determine Phospholipase A(2) Activity toward Artificial and Natural Substrates. , 1998, Analytical chemistry.

[62]  Khalil Arshak,et al.  An overview of foodborne pathogen detection: in the perspective of biosensors. , 2010, Biotechnology advances.

[63]  S. V. Sidorowicz,et al.  Prospects for New Techniques for Rapid Bacteriological Monitoring of Drinking Water , 1995 .

[64]  Jie Qiao,et al.  In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. , 2011, Analytical chemistry.

[65]  David J Beebe,et al.  Application of sexed semen technology to in vitro embryo production in cattle. , 2006, Theriogenology.

[66]  Vincent Studer,et al.  A nanoliter-scale nucleic acid processor with parallel architecture , 2004, Nature Biotechnology.

[67]  Donald L. Hopkins,et al.  Xylella Fastidiosa: Xylem-Limited Bacterial Pathogen of Plants , 1989 .

[68]  Min Jun Kim,et al.  Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. , 2008, Lab on a chip.

[69]  R. Pulak,et al.  Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. , 2006, Methods in molecular biology.

[70]  Dino Di Carlo,et al.  Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. , 2003, Lab on a chip.

[71]  Rashid Bashir,et al.  Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. , 2010, Lab on a chip.

[72]  Vernella Vickerman,et al.  Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. , 2008, Lab on a chip.

[73]  Christian Jungreuthmayer,et al.  Development of a disposable microfluidic biochip for multiparameter cell population measurements. , 2009, Analytical chemistry.

[74]  Stephen R. Quake,et al.  Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria , 2006, Science.

[75]  D. Ingber,et al.  Reconstituting Organ-Level Lung Functions on a Chip , 2010, Science.

[76]  Guillaume Mernier,et al.  Multiple-frequency Impedance Measurements in Continuous Flow for the Evaluation of Electrical Lysis of Yeast Cells , 2010 .

[77]  R. Ismagilov,et al.  Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. , 2008, Lab on a chip.

[78]  Ali Othmane,et al.  Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber , 2008 .

[79]  David J Beebe,et al.  Self-assembled peptide monolayers as a toxin sensing mechanism within arrayed microchannels. , 2009, Analytical chemistry.

[80]  Nor Azah Yusof,et al.  Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview , 2011, Sensors.

[81]  Yanbin Li,et al.  A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples , 2007 .

[82]  Mingming Wu,et al.  Assessing Adhesion Forces of Type I and Type IV Pili of Xylella fastidiosa Bacteria by Use of a Microfluidic Flow Chamber , 2007, Applied and Environmental Microbiology.

[83]  Alberto Escarpa,et al.  Microchips for CE: Breakthroughs in real‐world food analysis , 2008, Electrophoresis.

[84]  Donald Wlodkowic,et al.  Trapping and imaging of micron‐sized embryos using dielectrophoresis , 2011, Electrophoresis.

[85]  Mehmet Fatih Yanik,et al.  High-throughput in vivo vertebrate screening , 2010, Nature Methods.

[86]  Omowunmi A Sadik,et al.  Status of biomolecular recognition using electrochemical techniques. , 2009, Biosensors & bioelectronics.

[87]  Da Xing,et al.  Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics. , 2009, Analytical biochemistry.

[88]  Yanbin Li,et al.  Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. , 2009, Biosensors & bioelectronics.

[89]  M. Kalkum,et al.  Attomolar Detection of Botulinum Toxin Type A in Complex Biological Matrices , 2008, PloS one.

[90]  Richard A Montagna,et al.  Development of a microfluidic biosensor module for pathogen detection. , 2005, Lab on a chip.

[91]  Jing Fang,et al.  Detection of bacterial cells by impedance spectra via fluidic electrodes in a microfluidic device. , 2010, Lab on a chip.

[92]  Xuan Weng,et al.  Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip , 2009 .

[93]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[94]  G. Wheeler,et al.  Simple vertebrate models for chemical genetics and drug discovery screens: Lessons from zebrafish and Xenopus , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[95]  Hanry Yu,et al.  Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. , 2012, Lab on a chip.

[96]  Hsueh-Chia Chang,et al.  An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. , 2007, Biomicrofluidics.

[97]  H. Märkl,et al.  Killing of microorganisms by pulsed electric fields , 1996, Applied Microbiology and Biotechnology.

[98]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[99]  Dana M Spence,et al.  Addressing a vascular endothelium array with blood components using underlying microfluidic channels. , 2007, Lab on a chip.

[100]  P. Mariani,et al.  Potentials and limitations of molecular diagnostic methods in food safety , 2009, Genes & Nutrition.

[101]  Hsueh-Chia Chang,et al.  Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping , 2005 .

[102]  Olivier Lazcka,et al.  Pathogen detection: a perspective of traditional methods and biosensors. , 2007, Biosensors & bioelectronics.

[103]  Hui Chen,et al.  Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. , 2009, Talanta.

[104]  M Javanmard,et al.  A microfluidic platform for electrical detection of DNA hybridization. , 2011, Sensors and actuators. B, Chemical.

[105]  Jaebum Choo,et al.  DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes. , 2008, Biosensors & bioelectronics.

[106]  Sang Uk Son,et al.  Transport of live yeast and zebrafish embryo on a droplet digital microfluidic platform. , 2009, Lab on a chip.

[107]  Yu Zhang,et al.  A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane , 2011 .

[108]  Rustem F Ismagilov,et al.  Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. , 2006, Lab on a chip.

[109]  G. Yoshizaki,et al.  Biological characteristics of fish germ cells and their application to developmental biotechnology. , 2012, Reproduction in domestic animals = Zuchthygiene.

[110]  J. Irwin Biological assays with special reference to biological standards , 1950, Journal of Hygiene.

[111]  E. Alocilja,et al.  Design and fabrication of a microimpedance biosensor for bacterial detection , 2004, IEEE Sensors Journal.

[112]  Michael Brand,et al.  Micro fluid segment technique for screening and development studies on Danio rerio embryos. , 2007, Lab on a chip.

[113]  Catherine M. Klapperich,et al.  Microfluidics-based extraction of viral RNA from infected mammalian cells for disposable molecular diagnostics , 2008 .

[114]  A. Mak,et al.  A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection , 2009 .

[115]  Donald Wlodkowic,et al.  Wormometry‐on‐a‐chip: Innovative technologies for in situ analysis of small multicellular organisms , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[116]  E. Alocilja,et al.  A microfabricated biosensor for detecting foodborne bioterrorism agents , 2005, IEEE Sensors Journal.

[117]  Scott L Diamond,et al.  A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood. , 2008, Lab on a chip.