Adaptive Finite Element Simulation of Relaxed Models for Liquid-Solid Phase Transition

The purpose of this work is to develop time-space adaptive techniques for phase field models for liquid-solid phase transition. These models are based on coupled systems of the Cahn-Hilliard and the Allen-Cahn equation. The adaptive techniques under consideration allow for mesh adaptation with respect to a functional of interest. They are based on a discontinuous Galerkin approach for time stepping and the exploitation of a parabolic duality argument. For the Bi-Laplace operator arising in linearization of the Cahn-Hilliard equation, a non-conforming Galerkin method is employed.

[1]  Peter Steinke,et al.  Finite-Elemente-Methode , 2004 .

[2]  Ryo Kobayashi,et al.  A Numerical Approach to Three-Dimensional Dendritic Solidification , 1994, Exp. Math..

[3]  Rolf Rannacher,et al.  On mixed finite element methods in plate bending analysis , 1990 .

[4]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[5]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[6]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[7]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[8]  J. Warren,et al.  Modelling polycrystalline solidification using phase field theory , 2004 .

[9]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[10]  Britta Nestler,et al.  Phase-field simulations of solidification in binary and ternary systems using a finite element method , 2005 .

[11]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[12]  Rolf Stenberg,et al.  A posteriori error estimates for the Morley plate bending element , 2007, Numerische Mathematik.

[13]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[14]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .