Crystal-Orientation-Related Dynamic Tuning of the Lasing Spectra of CdS Nanobelts by Piezoelectric Polarization.

Realizing dynamic wavelength tunability could bring about tremendous impacts in laser technology, pressure nanosensing, and lab-on-a-chip devices. Here, we demonstrate an original strategy to operate the lasing mode shift through reversible length changes of a CdS nanobelt, which is determined by the direction of piezoelectric polarization. The relationships between the direction of applied strain, the lasing mode shift, and the tunable effective refractive index are elaborated in detail. The correlation between the piezoelectric polarization-induced lasing mode red shift and the blue shift in the wavelength of the lasing mode output caused by the Poisson effect is discussed in depth, as well. Our study comprehensively considers the influence of both the cavity size variations and refractive index changes on the control of the lasing mode and provides a deeper understanding of the strain-induced lasing mode shift.

[1]  Hans Mueller,et al.  Theory of the Photoelastic Effect of Cubic Crystals , 1935 .

[2]  A. Pan,et al.  Color-changeable optical transport through Se-doped CdS 1D nanostructures. , 2007, Nano letters.

[3]  Ruibin Liu,et al.  Reduction of lasing threshold by protecting gas and the structure dependent visual lasing mode of various CdS microstructures. , 2016, Optics express.

[4]  M. Guler,et al.  Elastic, Mechanical and Phonon Behavior of Wurtzite Cadmium Sulfide under Pressure , 2017 .

[5]  Zhong Lin Wang,et al.  Tunable WSe2-CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. , 2018, Nanoscale.

[6]  Caofeng Pan,et al.  Development and progress in piezotronics , 2015 .

[7]  C. Ronning,et al.  Excitation Energy Dependent Ultrafast Luminescence Behavior of CdS Nanostructures , 2017 .

[8]  Y. Bando,et al.  Single‐Crystalline CdS Nanobelts for Excellent Field‐Emitters and Ultrahigh Quantum‐Efficiency Photodetectors , 2010, Advanced materials.

[9]  Growth mechanism and photoluminescence of CdS nanobelts on Si substrate , 2004 .

[10]  Yasuhiko Arakawa,et al.  Room temperature continuous-wave lasing in photonic crystal nanocavity. , 2006, Optics express.

[11]  K. Vedam,et al.  Non‐linear piezo‐optics , 1967 .

[12]  F. Capasso,et al.  Low threshold room-temperature lasing of CdS nanowires , 2012, Nanotechnology.

[13]  Xianghua Zeng,et al.  Size Effects of Raman and Photoluminescence Spectra of CdS Nanobelts , 2013 .

[14]  C. Au,et al.  Design and Synthesis of Novel Single-Crystalline Hierarchical CdS Nanostructures Generated by Thermal Evaporation Processes , 2011 .

[15]  Shui-Tong Lee,et al.  Bicrystalline cdS nanoribbons , 2009 .

[16]  B. K. Reddy,et al.  Morphology dependent luminescence from CdS nanostructures , 2013 .

[17]  Yuefei Zhang,et al.  Size-dependent bandgap modulation of ZnO nanowires by tensile strain. , 2012, Nano letters.

[18]  Wanlin Guo,et al.  Strain Loading Mode Dependent Bandgap Deformation Potential in ZnO Micro/Nanowires. , 2015, ACS nano.

[19]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[20]  Rui Chen,et al.  Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers , 2014 .

[21]  Zhong Lin Wang,et al.  Enhanced Cu₂S/CdS coaxial nanowire solar cells by piezo-phototronic effect. , 2012, Nano letters.

[22]  N. Raghavan,et al.  Fast response CdS-CdSxTe1-x-CdTe core-shell nanobelt photodetector. , 2018, Science bulletin.

[23]  T. Thongtem,et al.  Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation , 2014 .

[24]  A. Pan,et al.  Nanolaser arrays based on individual waved CdS nanoribbons , 2016 .

[25]  Q. Xiong,et al.  Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption. , 2013, Nano letters.

[26]  Zhong Lin Wang,et al.  Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect , 2016 .

[27]  Jun Zhang,et al.  Surface depletion induced quantum confinement in CdS nanobelts. , 2012, ACS nano.

[28]  B. Pernick Nonlinear regression analysis for the Sellmeler dispersion equation of CdS. , 1983, Applied Optics.

[29]  Wei Ji,et al.  Giant Anisotropic Raman Response of Encapsulated Ultrathin Black Phosphorus by Uniaxial Strain , 2017 .

[30]  Caofeng Pan,et al.  Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect , 2015 .

[31]  Igor Muševič,et al.  Electrically tunable liquid crystal optical microresonators , 2009 .

[32]  C. Ronning,et al.  Dynamical Tuning of Nanowire Lasing Spectra , 2017, Nano letters.

[33]  Yang Jiang,et al.  Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays , 2007 .

[34]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[35]  G. Yi,et al.  Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. , 2005, The journal of physical chemistry. B.

[36]  Guangsheng Fu,et al.  ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect , 2018, Nano Energy.

[37]  Chunxiang Xu,et al.  Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action , 2014 .

[38]  K. Vedam,et al.  Pressure Dependence of the Refractive Indices of the Hexagonal Crystals Beryl, α -CdS, α -ZnS, and ZnO , 1969 .

[39]  Jian Wang,et al.  On-chip silicon photonic signaling and processing: a review. , 2018, Science bulletin.

[40]  Zhong Lin Wang,et al.  Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. , 2018, ACS nano.

[41]  Junlu Sun,et al.  Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect , 2019, Nano Energy.

[42]  Zhong Lin Wang,et al.  Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect , 2013 .

[43]  Shui-Tong Lee,et al.  High-quality CdS nanoribbons with lasing cavity , 2004 .

[44]  Chunxiang Xu,et al.  The excitonic photoluminescence mechanism and lasing action in band-gap-tunable CdS(1-x)Se(x) nanostructures. , 2016, Nanoscale.

[45]  Charles M Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2005, Nano letters.

[46]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[47]  Zhong Lin Wang,et al.  Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect , 2019, Materials Today.

[48]  W. Xu,et al.  Interface control for pure ultraviolet electroluminescence from nano-ZnO-based heterojunction devices. , 2017, Science bulletin.

[49]  Yaokun Pang,et al.  Ultrathin Piezotronic Transistors with 2 nm Channel Lengths. , 2018, ACS nano.

[50]  Caofeng Pan,et al.  Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications , 2019, Nano Energy.

[51]  Xiaoping Shen,et al.  Fabrication of well-aligned CdS nanotubes by CVD-template method , 2005 .

[52]  L. Casperson,et al.  Threshold characteristics of multimode semiconductor lasers , 1994 .

[53]  Yuhui Wu,et al.  Synthesis and optical properties of self-assembled flower-like CdS architectures by mixed solvothermal process , 2010 .