TWINE : A Lightweight , Versatile Block Cipher

This paper presents a 64-bit lightweight block cipher TWINE supporting 80 and 128-bit keys. It enables quite small hardware implementation similar to the previous proposals, yet enables efficient implementations on embedded software. Moreover, it allows a compact implementation of unified encryption and decryption. This characteristic mainly originates from the use of generalized Feistel with many subblocks combined with a recent improvement on the diffusion layer.

[1]  Hideki Imai,et al.  On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses , 1989, CRYPTO.

[2]  Eli Biham,et al.  Differential Cryptanalysis of the Data Encryption Standard , 1993, Springer New York.

[3]  Vincent Rijmen,et al.  The Block Cipher Square , 1997, FSE.

[4]  Eli Biham,et al.  Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials , 1999 .

[5]  Akashi Satoh,et al.  A Compact Rijndael Hardware Architecture with S-Box Optimization , 2001, ASIACRYPT.

[6]  Jongsung Kim,et al.  Impossible Differential Cryptanalysis for Block Cipher Structures , 2003, INDOCRYPT.

[7]  Eli Biham,et al.  New types of cryptanalytic attacks using related keys , 1994, Journal of Cryptology.

[8]  David Canright,et al.  A Very Compact S-Box for AES , 2005, CHES.

[9]  Chae Hoon Lim,et al.  mCrypton - A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors , 2005, WISA.

[10]  Christof Paar,et al.  New Lightweight DES Variants , 2007, FSE.

[11]  Jean-Jacques Quisquater,et al.  ASIC Implementations of the Block Cipher SEA for Constrained Applications , 2007 .

[12]  Christof Paar,et al.  A Survey of Lightweight-Cryptography Implementations , 2007, IEEE Design & Test of Computers.

[13]  Andrey Bogdanov,et al.  Small-Footprint Block Cipher Design - How far can you go? , 2007 .

[14]  Iwata Tetsu,et al.  The 128-bit Blockcipher CLEFIA , 2007 .

[15]  C. Paar,et al.  Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers , 2007 .

[16]  Christof Paar,et al.  Ultra-Lightweight Implementations for Smart Devices - Security for 1000 Gate Equivalents , 2008, CARDIS.

[17]  Yukiyasu Tsunoo,et al.  Impossible Differential Cryptanalysis of CLEFIA , 2008, FSE.

[18]  Babak Sadeghiyan,et al.  MIBS: A New Lightweight Block Cipher , 2009, CANS.

[19]  Cihangir Tezcan,et al.  Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT , 2009, ACISP.

[20]  Axel Poschmann,et al.  Lightweight cryptography: cryptographic engineering for a pervasive world , 2009, IACR Cryptol. ePrint Arch..

[21]  Deian Stefan,et al.  Fast Implementations of AES on Various Platforms , 2009, IACR Cryptol. ePrint Arch..

[22]  Michael Hamburg,et al.  Accelerating AES with Vector Permute Instructions , 2009, CHES.

[23]  Christophe De Cannière,et al.  KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers , 2009, CHES.

[24]  Alex Biryukov,et al.  Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others , 2010, EUROCRYPT.

[25]  Kyoji Shibutani,et al.  On the Diffusion of Generalized Feistel Structures Regarding Differential and Linear Cryptanalysis , 2010, Selected Areas in Cryptography.

[26]  Kazuhiko Minematsu,et al.  Improving the Generalized Feistel , 2010, FSE.

[27]  Yee Wei Law,et al.  KLEIN: A New Family of Lightweight Block Ciphers , 2010, RFIDSec.

[28]  Andrey Bogdanov,et al.  Biclique Cryptanalysis of the Full AES , 2011, ASIACRYPT.

[29]  Keting Jia,et al.  New Impossible Differential Attacks of Reduced-Round Camellia-192 and Camellia-256 , 2011, ACISP.

[30]  Christof Paar,et al.  Pushing the Limits: A Very Compact and a Threshold Implementation of AES , 2011, EUROCRYPT.

[31]  S. Kyoji,et al.  Piccolo: An Ultra-Lightweight Blockcipher , 2011 .

[32]  Kazuhiko Minematsu,et al.  On Maximum Differential Probability of Generalized Feistel , 2011, ACISP.