Coping with loss of perfection in the MHC class I peptide repertoire.

[1]  Simon C. Potter,et al.  Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants , 2007, Nature Genetics.

[2]  K. Rock,et al.  Analysis of the Role of Bleomycin Hydrolase in Antigen Presentation and the Generation of CD8 T Cell Responses1 , 2007, The Journal of Immunology.

[3]  M. Bevan,et al.  Effector and memory CTL differentiation. , 2007, Annual review of immunology.

[4]  P. van Endert,et al.  The Role of Endoplasmic Reticulum-Associated Aminopeptidase 1 in Immunity to Infection and in Cross-Presentation1 , 2007, The Journal of Immunology.

[5]  Nicholas A Williamson,et al.  A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule , 2007, Nature Immunology.

[6]  N. Shastri,et al.  In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides , 2007, Nature Immunology.

[7]  L. C. Antón,et al.  Need for Tripeptidyl-peptidase II in Major Histocompatibility Complex Class I Viral Antigen Processing when Proteasomes are Detrimental* , 2006, Journal of Biological Chemistry.

[8]  N. Shastri,et al.  ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. , 2006, Immunity.

[9]  A. Goldberg,et al.  Tripeptidyl Peptidase II Is the Major Peptidase Needed to Trim Long Antigenic Precursors, but Is Not Required for Most MHC Class I Antigen Presentation1 , 2006, The Journal of Immunology.

[10]  K. Rock,et al.  Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  N. Shastri,et al.  Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. , 2006, Immunity.

[12]  S. Ferracuti,et al.  Expression of Endoplasmic Reticulum Aminopeptidases in EBV-B Cell Lines from Healthy Donors and in Leukemia/Lymphoma, Carcinoma, and Melanoma Cell Lines1 , 2006, The Journal of Immunology.

[13]  Vrajesh V. Parekh,et al.  In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules , 2006, The Journal of experimental medicine.

[14]  P. van Endert,et al.  A Long N-terminal-extended Nested Set of Abundant and Antigenic Major Histocompatibility Complex Class I Natural Ligands from HIV Envelope Protein* , 2006, Journal of Biological Chemistry.

[15]  James McCluskey,et al.  Have we cut ourselves too short in mapping CTL epitopes? , 2006, Trends in immunology.

[16]  N. Shastri,et al.  The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules , 2006, Nature Immunology.

[17]  A. Goldberg,et al.  The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K. Rock,et al.  Leucine Aminopeptidase Is Not Essential for Trimming Peptides in the Cytosol or Generating Epitopes for MHC Class I Antigen Presentation1 , 2005, The Journal of Immunology.

[19]  Natalie A Borg,et al.  T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I–bound peptide , 2005, Nature Immunology.

[20]  N. Shastri,et al.  All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen‐processing pathway , 2005, Immunological reviews.

[21]  L. Schomburg,et al.  Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum , 2005, Nature Immunology.

[22]  M. Probst-Kepper,et al.  Conformational Restraints and Flexibility of 14-Meric Peptides in Complex with HLA-B*35011 , 2004, The Journal of Immunology.

[23]  Wendy J M van Zuylen,et al.  Potent T cell response to a class I‐binding 13‐mer viral epitope and the influence of HLA micropolymorphism in controlling epitope length , 2004, European journal of immunology.

[24]  M. Altfeld,et al.  Immune Selection for Altered Antigen Processing Leads to Cytotoxic T Lymphocyte Escape in Chronic HIV-1 Infection , 2004, The Journal of experimental medicine.

[25]  Jacques Neefjes,et al.  A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. , 2004, Immunity.

[26]  Muthuraman Sathiamurthy,et al.  Toward a Definition of Self: Proteomic Evaluation of the Class I Peptide Repertoire1 , 2004, The Journal of Immunology.

[27]  O. Lund,et al.  The Immune Epitope Database and Analysis Resource: From Vision to Blueprint , 2005, PLoS biology.

[28]  Jun Kunisawa,et al.  The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. , 2003, Molecular cell.

[29]  S. Mizutani,et al.  Human Leukocyte-derived Arginine Aminopeptidase , 2003, Journal of Biological Chemistry.

[30]  Concepción Marañón,et al.  An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope , 2003, Nature Immunology.

[31]  S. Mizutani,et al.  Human Leukocyte-derived Arginine Aminopeptidase THE THIRD MEMBER OF THE OXYTOCINASE SUBFAMILY OF AMINOPEPTIDASES* , 2003 .

[32]  A. Goldberg,et al.  The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues , 2002, Nature Immunology.

[33]  Akira Hattori,et al.  An IFN-γ–induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I–presented peptides , 2002, Nature Immunology.

[34]  N. Shastri,et al.  ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum , 2002, Nature.

[35]  N. Shastri,et al.  ER aminopeptidases generate a unique pool of peptides for MHC class I molecules , 2001, Nature Immunology.

[36]  A. Goldberg,et al.  26S proteasomes and immunoproteasomes produce mainly N‐extended versions of an antigenic peptide , 2001, The EMBO journal.

[37]  Hans-Georg Rammensee,et al.  Two new proteases in the MHC class I processing pathway , 2000, Nature Immunology.

[38]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[39]  W. Baumeister,et al.  A giant protease with potential to substitute for some functions of the proteasome. , 1999, Science.

[40]  A. Goldberg,et al.  Degradation of cell proteins and the generation of MHC class I-presented peptides. , 1999, Annual review of immunology.

[41]  M. Bevan,et al.  Selecting and maintaining a diverse T-cell repertoire , 1999, Nature.

[42]  A. Goldberg,et al.  Interferon-γ Can Stimulate Post-proteasomal Trimming of the N Terminus of an Antigenic Peptide by Inducing Leucine Aminopeptidase* , 1998, The Journal of Biological Chemistry.

[43]  A Sette,et al.  The peptide-binding motif for the human transporter associated with antigen processing , 1995, The Journal of experimental medicine.

[44]  M. Feltkamp,et al.  Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. , 1995, Journal of immunology.

[45]  D. Madden The three-dimensional structure of peptide-MHC complexes. , 1995, Annual review of immunology.

[46]  Edward J. Collins,et al.  Three-dimensional structure of a peptide extending from one end of a class I MHC binding site , 1994, Nature.

[47]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[48]  Hans-Georg Rammensee,et al.  Cellular peptide composition governed by major histocompatibility complex class I molecules , 1990, Nature.