Informative Drop‐Out in Longitudinal Data Analysis

A model is proposed for continuous longitudinal data with non-ignorable or informative drop-out (ID). The model combines a multivariate linear model for the underlying response with a logistic regression model for the drop-out process. The latter incorporates dependence of the probability of drop-out on unobserved, or missing, observations. Parameters in the model are estimated by using maximum likelihood (ML) and inferences drawn through conventional likelihood procedures. In particular, likelihood ratio tests can be used to assess the informativeness of the drop-out process through comparison of the full model with reduced models corresponding to random drop-out (RD) and completely random processes

[1]  E. Williams Experimental Designs Balanced for the Estimation of Residual Effects of Treatments , 1949 .

[2]  R. O'Neill Algorithm AS 47: Function Minimization Using a Simplex Procedure , 1971 .

[3]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[4]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .

[5]  A. P. Dawid,et al.  Likelihood and Bayesian Inference from Selectively Reported Data , 1977 .

[6]  Jerry A. Hausman,et al.  Attrition Bias in Experimental and Panel Data: The Gary Income Maintenance Experiment , 1979 .

[7]  A L Gould,et al.  A new approach to the analysis of clinical drug trials with withdrawals. , 1980, Biometrics.

[8]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[9]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[10]  R. Little Models for Nonresponse in Sample Surveys , 1982 .

[11]  William S. Reece,et al.  Imputation of Missing Values When the Probability of Response Depends on the Variable Being Imputed , 1982 .

[12]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[13]  T. Amemiya Tobit models: A survey , 1984 .

[14]  P. M. E. Altham,et al.  Improving the Precision of Estimation by Fitting a Model , 1984 .

[15]  R. Little,et al.  A note about models for selectivity bias. , 1985 .

[16]  S. Pantula,et al.  Nested analysis of variance with autocorrelated errors. , 1985, Biometrics.

[17]  J. Ware Linear Models for the Analysis of Longitudinal Studies , 1985 .

[18]  Donald B. Rubin,et al.  Selection modelling versus mixture modelling with nonignorable nonresponse , 1986 .

[19]  R Kay,et al.  A Markov model for analysing cancer markers and disease states in survival studies. , 1986, Biometrics.

[20]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[21]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[22]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[23]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[24]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[25]  Michael G. Kenward,et al.  A Method for Comparing Profiles of Repeated Measurements , 1987 .

[26]  N M Laird,et al.  Missing data in longitudinal studies. , 1988, Statistics in medicine.

[27]  Raymond J. Carroll,et al.  Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process , 1988 .

[28]  S. Zeger A regression model for time series of counts , 1988 .

[29]  P. Diggle An approach to the analysis of repeated measurements. , 1988, Biometrics.

[30]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[31]  Gregory R. Phillips,et al.  Error estimation using the sequential simplex method in nonlinear least squares data analysis , 1988 .

[32]  Steven. Brumby Exchange of comments on the simplex algorithm culminating in quadratic convergence and error estimation , 1989 .

[33]  Peter J. Diggle,et al.  Testing for random dropouts in repeated measurement data. , 1989 .

[34]  K. Bailey,et al.  Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. , 1989, Biometrics.

[35]  P. Diggle Time Series: A Biostatistical Introduction , 1990 .

[36]  R. Prentice,et al.  Opportunities for enhancing efficiency and reducing cost in large scale disease prevention trials: a statistical perspective. , 1990, Statistics in medicine.

[37]  Richard H. Jones,et al.  Serial correlation in unequally spaced longitudinal data , 1990 .

[38]  B. Cullis,et al.  Modelling in Repeated Measures Experiments , 1990 .

[39]  J Grüger,et al.  The validity of inferences based on incomplete observations in disease state models. , 1991, Biometrics.

[40]  D B Rubin,et al.  Multiple imputation in health-care databases: an overview and some applications. , 1991, Statistics in medicine.

[41]  S W Lagakos,et al.  Analyzing laboratory marker changes in AIDS clinical trials. , 1991, Journal of acquired immune deficiency syndromes.

[42]  D. Rubin,et al.  Ignorability and Coarse Data , 1991 .

[43]  W J Shih,et al.  On informative and random dropouts in longitudinal studies. , 1992, Biometrics.

[44]  M. Segal,et al.  A parametric family of correlation structures for the analysis of longitudinal data. , 1992, Biometrics.

[45]  B. Cullis,et al.  The Analysis of Multistratum and Spatially Correlated Repeated Measures Data , 1992 .

[46]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[47]  M D Schluchter,et al.  Methods for the analysis of informatively censored longitudinal data. , 1992, Statistics in medicine.

[48]  A Heyting,et al.  Statistical handling of drop-outs in longitudinal clinical trials. , 1992, Statistics in medicine.

[49]  S. Richardson,et al.  Conditional independence models for epidemiological studies with covariate measurement error. , 1993, Statistics in medicine.

[50]  Mark R. Conaway,et al.  Non-ignorable Non-response Models for Time-ordered Categorical Variables , 1993 .

[51]  Jens Perch Nielsen,et al.  A framework for consistent prediction rules based on markers , 1993 .

[52]  D. Spiegelhalter,et al.  Modelling Complexity: Applications of Gibbs Sampling in Medicine , 1993 .

[53]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[54]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[55]  D. Heitjan Ignorability and coarse data: some biomedical examples. , 1993, Biometrics.

[56]  N Tygstrup,et al.  Cyclosporin A treatment in primary biliary cirrhosis: results of a long-term placebo controlled trial. , 1993, Gastroenterology.

[57]  Adrian F. M. Smith,et al.  Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling , 1993 .

[58]  Robin Henderson,et al.  Influence in Linear Hazard Models , 1993 .

[59]  Xiao-Li Meng,et al.  The AIDS Epidemic: Estimating Survival After AIDS Diagnosis From Surveillance Data , 1993 .

[60]  R F Woolson,et al.  Slope estimation in the presence of informative right censoring: modeling the number of observations as a geometric random variable. , 1994, Biometrics.

[61]  H. Quan,et al.  Estimation of the mean when data contain non-ignorable missing values from a random effects model , 1994 .

[62]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[63]  James H. Ware,et al.  A simulation study of estimators for rates of change in longitudinal studies with attrition. , 1991, Statistics in medicine.

[64]  D. Follmann,et al.  An approximate generalized linear model with random effects for informative missing data. , 1995, Biometrics.