An iterative super-resolution reconstruction of image sequences using a Bayesian approach and affine block-based registration

Due to translational registration, traditional super-resolution reconstructions can apply only on the sequences that have simple translation motion. This paper reviews the super-resolution algorithm in these two decades and proposes a novel super-resolution reconstruction that that can apply on real sequences or complex motion sequences. The proposed super-resolution reconstruction uses a high accuracy registration algorithm, the fast affine block-based registration [42], in the stochastic regularization technique of Bayesian MAP estimation used to compensate the missing measurement information. The experimental results show that the proposed reconstruction can apply on real sequence such as Suzie, Mobile Calendar and Foreman.

[1]  Kamesh Namuduri Motion estimation using spatio-temporal contextual information , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  Somchai Jitapunkul,et al.  Face segmentation based on Hue-Cr components and morphological technique , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[3]  Fernando Pereira,et al.  Objective evaluation of video segmentation quality , 2003, IEEE Trans. Image Process..

[4]  Michael Elad SUPER-RESOLUTION RESTORATION OF CONTINUOUS IMAGE SEQUENCE - ADAPTIVE FILTERING APPROACH , 2007 .

[5]  Michael Elad,et al.  Super-Resolution Reconstruction of Image Sequences , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Takeo Kanade,et al.  Limits on Super-Resolution and How to Break Them , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Yücel Altunbasak,et al.  Super-resolution still and video reconstruction from MPEG-coded video , 2002, IEEE Trans. Circuits Syst. Video Technol..

[8]  Douglas Lim,et al.  Achieving Accurate Image Registration as the Basis for Super-Resolution , 2003 .

[9]  Marcel Worring,et al.  Regularized Patch Motion Estimation , 2002, ICPR.

[10]  Nick G. Kingsbury,et al.  Combined affine and translational motion compensation scheme using triangular tessellations , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[11]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[12]  Wen-Yu Su,et al.  Recursive high-resolution reconstruction of blurred multiframe images , 1993, IEEE Trans. Image Process..

[13]  Michael Elad,et al.  A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur , 2001, IEEE Trans. Image Process..

[14]  M. Ng,et al.  Analysis of displacement errors in high-resolution image reconstruction with multisensors , 2002 .

[15]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[16]  Xuan Jing,et al.  An efficient three-step search algorithm for block motion estimation , 2004, IEEE Transactions on Multimedia.

[17]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[18]  Yücel Altunbasak,et al.  Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants , 2001, IEEE Trans. Image Process..

[19]  Rosalind W. Picard Gibbs random fields: temperature and parameter analysis , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[20]  Nanning Zheng,et al.  Image hallucination with primal sketch priors , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Kai-Kuang Ma,et al.  A new diamond search algorithm for fast block-matching motion estimation , 2000, IEEE Trans. Image Process..

[22]  Mohammed Ghanbari,et al.  Video Coding: An Introduction to Standard Codecs , 1999 .

[23]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[24]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Deepu Rajan,et al.  Simultaneous Estimation of Super-Resolved Scene and Depth Map from Low Resolution Defocused Observations , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Michael Elad,et al.  Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images , 1997, IEEE Trans. Image Process..

[28]  Martin Vetterli,et al.  Double resolution from a set of aliased images , 2004, IS&T/SPIE Electronic Imaging.

[29]  Michael Elad,et al.  Dynamic demosaicing and color superresolution of video sequences , 2004, SPIE Optics + Photonics.

[30]  Lai-Man Po,et al.  A novel four-step search algorithm for fast block motion estimation , 1996, IEEE Trans. Circuits Syst. Video Technol..

[31]  Robert L. Stevenson,et al.  A Bayesian approach to image expansion for improved definitio , 1994, IEEE Trans. Image Process..

[32]  Janusz Konrad,et al.  Motion estimation for region-based video coding , 1995, Proceedings., International Conference on Image Processing.

[33]  Robert L. Stevenson,et al.  Extraction of high-resolution frames from video sequences , 1996, IEEE Trans. Image Process..

[34]  Alex Pentland,et al.  Markov/Gibbs texture modeling: aura matrices and temperature effects , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[36]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[37]  Michael Elad,et al.  Superresolution restoration of an image sequence: adaptive filtering approach , 1999, IEEE Trans. Image Process..

[38]  Heung-Yeung Shum,et al.  Fundamental limits of reconstruction-based superresolution algorithms under local translation , 2004 .

[39]  Yao Wang,et al.  Video Processing and Communications , 2001 .

[40]  Edward H. Adelson,et al.  Spatio-temporal segmentation of video data , 1994, Electronic Imaging.

[41]  Moon Gi Kang,et al.  Super-resolution image reconstruction , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[42]  Yücel Altunbasak,et al.  Super-resolution reconstruction of compressed video using transform-domain statistics , 2004, IEEE Transactions on Image Processing.

[43]  Nikolas P. Galatsanos,et al.  Regularized constrained total least-squares image restoration , 1994, Other Conferences.

[44]  Debashis Ghosh,et al.  Object-based affine motion estimation , 2003, TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region.

[45]  Nirmal K. Bose,et al.  Recursive reconstruction of high resolution image from noisy undersampled multiframes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[46]  Nirmal K. Bose,et al.  Mathematical analysis of super-resolution methodology , 2003, IEEE Signal Process. Mag..

[47]  S. Chaudhuri,et al.  Multi-objective super resolution: concepts and examples , 2003, IEEE Signal Process. Mag..

[48]  Michael Elad,et al.  A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur , 2000, 21st IEEE Convention of the Electrical and Electronic Engineers in Israel. Proceedings (Cat. No.00EX377).

[49]  Michael Elad,et al.  Multiframe demosaicing and super-resolution of color images , 2006, IEEE Transactions on Image Processing.

[50]  Peyman Milanfar,et al.  A computationally efficient superresolution image reconstruction algorithm , 2001, IEEE Trans. Image Process..