Model Predictive Control for Underwater Robots in Ocean Waves

Underwater robots beneath ocean waves can benefit from feedforward control to reduce position error. This letter proposes a method using model predictive control (MPC) to predict and counteract future disturbances from an ocean wave field. The MPC state estimator employs a linear wave theory (LWT) solver to approximate the component fluid dynamics under a wave field. Wave data from deployed ocean buoys are used to construct the simulated wave field. The MPC state estimator is used to optimize a set of control actions by gradient descent along a prediction horizon. The optimized control input minimizes a global cost function, the squared distance from the target state. The robot then carries out the optimized trajectory with an emphasis on real-time execution. Several prediction horizons are compared, with a horizon of 0.8 s selected as having a good balance of low error and fast computation. The controller with the chosen prediction horizon is simulated and found to show a 74% reduction in position error over traditional feedback control. Additional simulations are run where the MPC takes in noisy measurements of the wave field parameters. The MPC algorithm is shown to be resistant to sensor noise, showing a mean position error 44% lower than the noise-free feedback control case.

[1]  Solomon C. Yim,et al.  Wave energy converter modeling in the time domain: A design guide , 2013, 2013 1st IEEE Conference on Technologies for Sustainability (SusTech).

[2]  Narcís Palomeras,et al.  Coverage Path Planning with Real‐time Replanning and Surface Reconstruction for Inspection of Three‐dimensional Underwater Structures using Autonomous Underwater Vehicles , 2015, J. Field Robotics.

[3]  Frank Kirchner,et al.  A Robot Application for Marine Vessel Inspection , 2014, J. Field Robotics.

[4]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[5]  Gaurav S. Sukhatme,et al.  Branch and bound for informative path planning , 2012, 2012 IEEE International Conference on Robotics and Automation.

[6]  Marko Bacic,et al.  Model predictive control , 2003 .

[7]  Nicholas M. Patrikalakis,et al.  Experiments on Surface Reconstruction for Partially Submerged Marine Structures , 2013, J. Field Robotics.

[8]  Ryan N. Smith,et al.  Predictive motion planning for AUVs subject to strong time-varying currents and forecasting uncertainties , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Robert S. Leiken,et al.  A User’s Guide , 2011 .

[10]  Ted K.A. Brekken,et al.  On Model Predictive Control for a point absorber Wave Energy Converter , 2011, 2011 IEEE Trondheim PowerTech.

[11]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[12]  Yan Pailhas,et al.  Path Planning for Autonomous Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[13]  Ryan M. Eustice,et al.  Opportunistic sampling-based planning for active visual SLAM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Srikanth Saripalli,et al.  Analysis of adaptive sampling techniques for underwater vehicles , 2013, Auton. Robots.

[15]  J. Crease The Dynamics of the Upper Ocean , 1967 .

[16]  Gaurav S. Sukhatme,et al.  Informative path planning for an autonomous underwater vehicle , 2010, 2010 IEEE International Conference on Robotics and Automation.

[17]  D. Paley,et al.  Underwater gliders: recent developments and future applications , 2004, Proceedings of the 2004 International Symposium on Underwater Technology (IEEE Cat. No.04EX869).

[18]  L. Medagoda,et al.  Model predictive control of an autonomous underwater vehicle in an in situ estimated water current profile , 2012, 2012 Oceans - Yeosu.

[19]  Ryan N. Smith,et al.  Predicting the speed of a Wave Glider autonomous surface vehicle from wave model data , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  O. Phillips The dynamics of the upper ocean , 1966 .

[21]  Gaurav S. Sukhatme,et al.  Persistent ocean monitoring with underwater gliders: Adapting sampling resolution , 2011, J. Field Robotics.

[22]  James Joslin,et al.  Development of an Adaptable Monitoring Package for marine renewable energy , 2013, 2013 OCEANS - San Diego.

[23]  J. Falnes Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction , 2002 .

[24]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[25]  O. Sawodny,et al.  Nonlinear Model Predictive Control of a Point Absorber Wave Energy Converter , 2013, IEEE Transactions on Sustainable Energy.

[26]  J. S. Riedel,et al.  Shallow water stationkeeping of an autonomous underwater vehicle: the experimental results of a disturbance compensation controller , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[27]  Enrique Alvarez Fanjul,et al.  Path planning for gliders using Regional Ocean Models: Application of Pinzón path planner with the ESEOAT model and the RU27 trans-Atlantic flight data , 2010, OCEANS'10 IEEE SYDNEY.

[28]  Geoffrey A. Hollinger,et al.  Uncertainty-driven view planning for underwater inspection , 2012, 2012 IEEE International Conference on Robotics and Automation.

[29]  Stefan B. Williams,et al.  Bathymetric particle filter SLAM using trajectory maps , 2012, Int. J. Robotics Res..

[30]  Geoffrey A. Hollinger,et al.  Active and Adaptive Dive Planning for Dense Bathymetric Mapping , 2012, ISER.

[31]  Kagan Tumer,et al.  Optimizing ballast design of wave energy converters using evolutionary algorithms , 2011, GECCO '11.

[32]  Mariette Yvinec,et al.  A surface reconstruction method for in-detail underwater 3D optical mapping , 2015, Int. J. Robotics Res..

[33]  Belinda A. Batten,et al.  Real Time Estimation and Prediction of Wave Excitation Forces on a Heaving Body , 2015 .

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[36]  Naomi Ehrich Leonard,et al.  Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay , 2010, J. Field Robotics.

[37]  A. J. Healey,et al.  Shallow water station keeping of AUVs using multi-sensor fusion for wave disturbance prediction and compensation , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[38]  Lashika Medagoda,et al.  Autonomous Underwater Vehicle localization in a spatiotemporally varying water current field , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Gaurav S. Sukhatme,et al.  Adaptive Path Planning for Tracking Ocean Fronts with an Autonomous Underwater Vehicle , 2014, ISER.

[40]  Peter I. Corke,et al.  Data muling over underwater wireless sensor networks using an autonomous underwater vehicle , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[41]  Yoshimi Goda,et al.  Random Seas and Design of Maritime Structures , 1985 .

[42]  Dimos V. Dimarogonas,et al.  A self-triggered visual servoing model predictive control scheme for under-actuated underwater robotic vehicles , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Geoffrey A. Hollinger,et al.  Active planning for underwater inspection and the benefit of adaptivity , 2012, Int. J. Robotics Res..

[44]  Ryan M. Eustice,et al.  Active visual SLAM for robotic area coverage: Theory and experiment , 2015, Int. J. Robotics Res..

[45]  合田 良実,et al.  Random seas and design of maritime structures , 1985 .

[46]  Gregory Dudek,et al.  Autonomous Adaptive Underwater Exploration using Online Topic Modeling , 2012, ISER.

[47]  Alkis Gotovos,et al.  Fully autonomous focused exploration for robotic environmental monitoring , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[48]  D. Yoerger,et al.  Iron Age Shipwrecks in Deep Water off Ashkelon, Israel , 2002, American Journal of Archaeology.

[49]  Magda Osman,et al.  Control Systems Engineering , 2010 .

[50]  Gaurav S. Sukhatme,et al.  Trajectory Design for Autonomous Underwater Vehicles Based on Ocean Model Predictions for Feature Tracking , 2009, FSR.

[51]  Gaurav S. Sukhatme,et al.  Predicting Wave Glider speed from environmental measurements , 2011, OCEANS'11 MTS/IEEE KONA.