Consideration of Moving Tooth Load in Gear Crack Propagation Predictions

Abstract : Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two dimensional analysis of an involuted spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.

[1]  T. K. Hellen,et al.  Numerical methods for determining stress intensity factors vs crack depth in gear tooth roots , 1997 .

[2]  Michele Ciavarella,et al.  Numerical methods for the optimisation of specific sliding, stress concentration and fatigue life of gears , 1999 .

[3]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[4]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[5]  Robert F. Handschuh,et al.  A Method for Thermal Analysis of Spiral Bevel Gears , 1994 .

[6]  Jj Au,et al.  Correlation between fatigue crack growth rate and fatigue striation spacing in AISI 9310 (AMS 6265) steel , 1981 .

[7]  Katsumi Inoue,et al.  Crack growth resistance due to shot peening in carburized gears , 1995 .

[8]  Ronald L. Huston,et al.  On Dynamic Loads in Parallel Shaft Transmissions: Part I—Modelling and Analysis , 1988 .

[9]  Mario Guagliano,et al.  FATIGUE CRACK GROWTH PREDICTION IN SPECIMENS SIMILAR TO SPUR GEAR TEETH , 1997 .

[10]  Roberto Ballarini,et al.  Effect of Rim Thickness on Gear Crack Propagation Path. , 1997 .

[11]  J. Flašker,et al.  Stress intensity factor for cracked gear tooth , 1994 .

[12]  Faydor L. Litvin,et al.  A Method for Determining Spiral-Bevel Gear Tooth Geometry for Finite Element Analysis , 1991 .

[13]  Paul A. Wawrzynek,et al.  Three-Dimensional Gear Crack Propagation Studies , 1998 .

[14]  Yi Zhang,et al.  Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears , 1991 .

[15]  Gianni Nicoletto,et al.  Approximate stress intensity factors for cracked gear teeth , 1993 .

[16]  J. Flašker,et al.  Experimental analysis of propagation of fatigue crack on gears , 1998 .

[17]  S. Glodež Experimental results of the fatigue crack growth in a gear tooth root , 1998 .

[18]  N. K. Anifantis,et al.  Boundary element analysis of gear teeth fracture , 1997 .

[19]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[20]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[21]  Paul A. Wawrzynek,et al.  Simulating Fatigue Crack Growth in Spiral Bevel Gears , 2001 .