The Chemical and Ionization Conditions in Weak Mg II Absorbers

We present an analysis of the chemical and ionization conditions in a sample of 100 weak Mg II absorbers identified in the VLT/UVES archive of quasar spectra. In addition to Mg II, we present equivalent width and column density measurements of other low ionization species such as Mg I, Fe II, Al II, C II, Si II, and also Al III. We find that the column densities of C II and Si II are strongly correlated with the column density of Mg II, with minimal scatter in the relationships. The column densities of Fe II exhibit an appreciable scatter when compared with the column density of Mg II, with some fraction of clouds having N(Fe II) ~ N(Mg II)$N(Fe ^{t{$ -->, in which case the density is constrained to -->nH > 0.05 cm−3. Other clouds in which N(Fe II) N(Mg II)$N(Fe ^{t{$ --> have much lower densities. From ionization models, we infer that the metallicity in a significant fraction of weak Mg II clouds is constrained to values of solar or higher, if they are sub-Lyman-limit systems. Based on the observed constraints, we hypothesize that weak Mg II absorbers are predominantly tracing two different astrophysical processes/structures. A significant population of weak Mg II clouds, those in which N(Fe II) N(Mg II)$N(Fe ^{t{$ -->, identified at both low ( -->z ~ 1) and high ( -->z ~ 2) redshift, are likely to be tracing gas in the extended halos of galaxies, analogous to the Galactic high-velocity clouds. These absorbers might correspond to α-enhanced interstellar gas expelled from star-forming galaxies, in correlated supernova events. The N(Mg II) and N(Fe II)/N(Mg II) in such clouds are also closely comparable to those measured for the high-velocity components in strong Mg II systems. An evolution is found in N(Fe II)/N(Mg II) from -->z = 2.4 to -->z = 0.4, with an absence of weak Mg II clouds with N(Fe II) ~ N(Mg II)$N(Fe ^{t{$ --> at high-z. The N(Fe II) ~ N(Mg II)$N(Fe ^{t{$ --> clouds, which are prevalent at lower redshifts ( -->z < 1.5), must be tracing Type Ia enriched gas in small, high-metallicity pockets in dwarf galaxies, tidal debris, or other intergalactic structures.

[1]  R. Lynch,et al.  The Kinematic Evolution of Strong Mg II Absorbers , 2007, 0706.0515.

[2]  C. Leitherer,et al.  Kinematics of Interstellar Gas in Nearby UV-selected Galaxies Measured with HST STIS Spectroscopy , 2006, astro-ph/0605215.

[3]  N. Bond,et al.  High-Redshift Superwinds as the Source of the Strongest Mg II Absorbers: A Feasibility Analysis , 2001, astro-ph/0108062.

[4]  K. Lanzetta,et al.  An Absorption-Line Survey of 32 QSOs at Red Wavelengths: Properties of the MG II Absorbers , 1987 .

[5]  On the Heterogeneity of Metal-Line and Lyα Absorption in Galaxy "Halos" at z ~ 0.7 , 2006, astro-ph/0612560.

[6]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3* , 2005, astro-ph/0505122.

[7]  R. Lynch,et al.  A Survey of Weak Mg II Absorbers at Redshift ⟨z⟩ = 1.78 , 2005, astro-ph/0512070.

[8]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. I - Univariate distributions , 1985 .

[9]  R. Carswell,et al.  A large population of metal-rich, compact, intergalactic C iv absorbers – evidence for poor small-scale metal mixing , 2007, astro-ph/0701761.

[10]  J. Bland-Hawthorn,et al.  Multiphase High-Velocity Clouds toward HE 0226–4110 and PG 0953+414 , 2005, astro-ph/0505299.

[11]  J. Shull,et al.  Highly ionized high - velocity clouds toward PKS 2155-304 and Markarian 509 , 2003, astro-ph/0312105.

[12]  Gary J. Ferland,et al.  Rate coefficients for charge transfer between hydrogen and the first 30 elements , 1996 .

[13]  Ionization Properties and Elemental Abundances in Damped Lyα Systems , 2001, astro-ph/0104298.

[14]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[15]  J. Black,et al.  High-resolution spectroscopy of flat-spectrum quasars I. Redshifted emission and absorption in PKS 2145+067 , 2004 .

[16]  UK.,et al.  A homogeneous sample of sub-damped Lyman α systems- I. Construction of the sample and chemical abundance measurements , 2003, astro-ph/0307049.

[17]  C. Churchill,et al.  The Kinematic Composition of Mg II Absorbers , 1997, astro-ph/9712235.

[18]  C. Steidel,et al.  A survey of Lyman-limit absorption in the spectra of 59 high-redshift QSOs , 1989 .

[19]  Max Pettini Alice E. Shapley Charles C. Steidel Jean-G Giavalisco The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics* , 2001 .

[20]  T. Heckman,et al.  Absorption-Line Probes of Gas and Dust in Galactic Superwinds , 2000, astro-ph/0002526.

[21]  Max Pettini,et al.  The sizes and kinematic structure of absorption systems towards the lensed quasar APM08279+5255 , 2004 .

[22]  C. Steidel,et al.  MgII absorption through intermediate redshift galaxies , 2005, Proceedings of the International Astronomical Union.

[23]  B. Savage,et al.  Highly Ionized Gas in the Galactic Halo and the High-Velocity Clouds toward PG 1116+215 , 2003, astro-ph/0412485.

[24]  R. Bouwens,et al.  Star Formation at z ~ 6: i-Dropouts in the Advanced Camera for Surveys Guaranteed Time Observation Fields , 2003 .

[25]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[26]  A Reappraisal of the Solar Photospheric C/O Ratio , 2002, astro-ph/0206089.

[27]  W.-H. Wang,et al.  A Near-Infrared Analysis of the Submillimeter Background and the Cosmic Star-Formation History , 2005, astro-ph/0512347.

[28]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[29]  W. Sargent,et al.  Small-Scale Structure at High Redshift. IV. Low-Ionization Gas Intersecting Three Lines of Sight to Q2237+0305 , 2002, astro-ph/0204461.

[30]  Carlos Allende Prieto,et al.  The Forbidden Abundance of Oxygen in the Sun , 2001, astro-ph/0106360.

[31]  S. Vogt,et al.  The Physical Conditions of Intermediate-Redshift Mg II Absorbing Clouds from Voigt Profile Analysis , 2002, astro-ph/0210196.

[32]  Jane C. Charlton,et al.  The Population of Weak Mg II Absorbers. I. A Survey of 26 QSO HIRES/Keck Spectra* ** , 1999 .

[33]  Space Science Reviews , 1962, Nature.

[34]  The O VI Absorbers toward PG 0953+415: High-Metallicity, Cosmic-Web Gas Far from Luminous Galaxies* , 2006, astro-ph/0604415.

[35]  New abundance determinations in z < 1.5 QSO absorbers: seven sub-DLAs and one DLA , 2007, astro-ph/0702297.

[36]  R. Lynch,et al.  Physical Properties of Weak Mg II Absorbers at z ~ 2 , 2007, 0705.2036.

[37]  Star Formation Rates and Extinction Properties of IR-luminous Galaxies in the Spitzer First Look Survey , 2005, astro-ph/0509894.

[38]  Casey Papovich,et al.  A Direct Measurement of Major Galaxy Mergers at z 3 , 2003 .

[39]  C. Steidel,et al.  The Hubble Space Telescope quasar absorption line key project. v. redshift evolution of lyman limit absorption in the spectra of a large sample of quasars , 1995 .

[40]  The Kinematics of Intermediate-Redshift Mg II Absorbers , 2001, astro-ph/0106006.

[41]  Tristan L. Smith,et al.  Average extinction curves and relative abundances for quasi-stellar object absorption-line systems at 1 ≤zabs < 2 , 2006, astro-ph/0601279.

[42]  IONIZATION PROPERTIES AND ELEMENTAL ABUNDANCES IN DAMPED Lya SYSTEMS , .

[43]  Bruce G. Elmegreen,et al.  Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit , 2005 .

[44]  The Distribution of Metallicity in the Intergalactic Medium at z ~ 2.5: O VI and C IV Absorption in the Spectra of Seven QSOs , 2003, astro-ph/0312467.

[45]  G. Hill,et al.  Specific Star Formation Rates to Redshift 1.5 , 2004, astro-ph/0412358.

[46]  C. Steidel,et al.  Mg II absorption in the spectra of 103 QSOs : implications for the evolution of gas in high-redshift galaxies , 1992 .

[47]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[48]  W. Sargent,et al.  Small-Scale Structure at High Redshift. I. Glimpses of the Interstellar Medium at Redshift ~3.5 , 1998, astro-ph/9812027.

[49]  C. Steidel,et al.  On the Spatial and Kinematic Distributions of Mg II Absorbing Gas in ⟨z⟩ ~ 0.7 Galaxies , 1996, astro-ph/9605180.

[50]  R. Lynch,et al.  The Nature of Weak Mg II Absorbing Structures , 2005, astro-ph/0512238.

[51]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[52]  C. Churchill,et al.  The Absorption Signatures of Dwarf Galaxies: The z = 1.04 Multicloud Weak Mg II Absorber toward PG 1634+706 , 2004, astro-ph/0403121.

[53]  Jessica L. Rosenberg,et al.  Discovery of a Metal-Line Absorber Associated with a Local Dwarf Starburst Galaxy , 2006, astro-ph/0608301.

[54]  A Quadruple-Phase Strong Mg II Absorber at z ~ 0.9902 toward PG 1634+706 , 2003, astro-ph/0302298.

[55]  D. Weinberg,et al.  Voigt-Profile Analysis of the Lyα Forest in a Cold Dark Matter Universe , 1996, astro-ph/9609115.

[56]  B. Gibson,et al.  Hα Emission from High-Velocity Clouds and Their Distances , 2003, astro-ph/0307509.

[57]  J. Charlton,et al.  Supersolar Metallicity in Weak Mg II Absorption Systems at z ~ 1.7 , 2008, 0801.2452.

[58]  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview* , 2002, astro-ph/0210314.

[59]  B. Frye,et al.  High-metallicity, photoionized gas in intergalactic large-scale filaments , 2005, astro-ph/0512163.

[60]  High-Metallicity Mg II Absorbers in the z < 1 Lyα Forest of PKS 0454+039: Giant Low Surface Brightness Galaxies?* ** , 1998, astro-ph/9801124.

[61]  J. Kollmeier,et al.  The Kinematic Connection between absorbing Gas toward QSOs and Galaxies at Intermediate Redshift , 2002, astro-ph/0201353.

[62]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[63]  S. E. Persson,et al.  Field Galaxy Evolution Since Z 1 from a Sample of QSO Absorption-Selected Galaxies , 1994, astro-ph/9410025.

[64]  Carnegie Observatories,et al.  Discovery of a Dwarf Poststarburst Galaxy near a High Column Density Local Lyα Absorber , 2004, astro-ph/0403042.

[65]  Observations of Chemically Enriched QSO Absorbers near z~2.3 Galaxies: Galaxy Formation Feedback Signatures in the Intergalactic Medium* , 2005, astro-ph/0508116.

[66]  Karl Glazebrook,et al.  The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .

[67]  B. Ménard,et al.  Probing Galaxies through Quasar Absorption Lines , 2005 .

[68]  J. Charlton,et al.  A Survey of Weak Mg II Absorbers at 0.4 < z < 2.4* , 2007, astro-ph/0701075.

[69]  A Survey of Analogs to Weak Mg II Absorbers in the Present , 2005, astro-ph/0509505.

[70]  D. Turnshek,et al.  Mg II Absorption Systems in Sloan Digital Sky Survey QSO Spectra , 2005 .

[71]  C. Leitherer,et al.  FUSE Observations of Outflowing O VI in the Dwarf Starburst Galaxy NGC 1705 , 2001, astro-ph/0102283.

[72]  Karl Glazebrook,et al.  A Morphological Catalog of Galaxies in the Hubble Deep Field , 1996 .