Metodos de lagrangiano aumentado com convergencia utilizando a condição de dependencia linear positiva constante
暂无分享,去创建一个
[1] José Mario Martínez,et al. On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..
[2] Zdenek Dostál,et al. Semi-monotonic inexact augmented Lagrangians for quadratic programing with equality constraints , 2005, Optim. Methods Softw..
[3] R. Janin. Directional derivative of the marginal function in nonlinear programming , 1984 .
[4] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[5] E. J. McShane. The Lagrange Multiplier Rule , 1973 .
[6] Benar Fux Svaiter,et al. A Practical Optimality Condition Without Constraint Qualifications for Nonlinear Programming , 2003 .
[7] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[8] R. Fletcher. Practical Methods of Optimization , 1988 .
[9] Nicholas I. M. Gould,et al. Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints , 1996, SIAM J. Optim..
[10] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[11] J. M. Martínez,et al. Inexact spectral projected gradient methods on convex sets , 2003 .
[12] José Mario Martínez,et al. Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.
[13] O. Mangasarian,et al. The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .
[14] José Mario Martínez,et al. Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems , 2005, Comput. Optim. Appl..
[15] Asuman E. Ozdaglar,et al. The relation between pseudonormality and quasiregularity in constrained optimization , 2004, Optim. Methods Softw..
[16] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[17] José Mario Martínez,et al. Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..
[18] W. Hager. Analysis and implementation of a dual algorithm for constrained optimization , 1993 .
[19] R. J. Paul,et al. Optimization Theory: The Finite Dimensional Case , 1977 .
[20] V. Torczon,et al. A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .
[21] P. Toint,et al. Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .
[22] R. Rockafellar. The multiplier method of Hestenes and Powell applied to convex programming , 1973 .
[23] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[24] Zengxin Wei,et al. On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..
[25] Asuman E Ozdaglar,et al. Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization , 2002 .
[26] José Mario Martínez,et al. Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..
[27] R. Andreani,et al. On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .
[28] Zdenek Dostál,et al. Augmented Lagrangians with Adaptive Precision Control for Quadratic Programming with Simple Bounds and Equality Constraints , 2002, SIAM J. Optim..