Edge-Pursuit Comparator: An Energy-Scalable Oscillator Collapse-Based Comparator With Application in a 74.1 dB SNDR and 20 kS/s 15 b SAR ADC

This paper presents a new energy-efficient ring oscillator collapse-based comparator, named edge-pursuit comparator (EPC). This comparator automatically adjusts the performance by changing the comparison energy according to its input difference without any control, eliminating unnecessary energy spent on coarse comparisons. Furthermore, a detailed analysis of the EPC in the phase domain shows improved energy efficiency over conventional comparators even without energy scaling, and wider resolution tuning capability with small load capacitance and area. The EPC is used in a successive-approximation-register analog-to-digital converter (SAR ADC) design, which supplements a 10 b differential coarse capacitive digital-to-analog converter (CDAC) with a 5 b common-mode CDAC. This offers an additional 5 b of resolution with common mode to differential gain tuning that improves linearity by reducing the effect of switch parasitic capacitance. A test chip fabricated in 40 nm CMOS shows 74.12 dB signal-to-noise and distortion ratio and 173.4 dB Schreier Figure-of-Merit. With the full ADC consuming 1.17 $\mu \text{W}$ , the comparator consumes 104 nW, which is only 8.9% of the full ADC power, proving the comparator’s energy efficiency.

[1]  B. Razavi,et al.  An 8-bit 150-MHz CMOS A/D converter , 1999, IEEE Journal of Solid-State Circuits.

[2]  Chulwoo Kim,et al.  An oscillator collapse-based comparator with application in a 74.1dB SNDR, 20KS/s 15b SAR ADC , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[3]  Colin Lyden,et al.  An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[4]  B.P. Ginsburg,et al.  500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC , 2007, IEEE Journal of Solid-State Circuits.

[5]  Arthur H. M. van Roermund,et al.  11.1 An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[6]  Arthur H. M. van Roermund,et al.  A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step , 2013, IEEE Journal of Solid-State Circuits.

[7]  T. Kobayashi,et al.  A current-mode latch sense amplifier and a static power saving input buffer for low-power architecture , 1992, 1992 Symposium on VLSI Circuits Digest of Technical Papers.

[8]  Michael P. Flynn,et al.  A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC , 2015, IEEE Journal of Solid-State Circuits.

[9]  Won Namgoong,et al.  Comparator Power Minimization Analysis for SAR ADC Using Multiple Comparators , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Jae-Yoon Sim,et al.  A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface , 2011, IEEE Journal of Solid-State Circuits.

[11]  Hsin-Shu Chen,et al.  11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[12]  David Blaauw,et al.  14.2 A physically unclonable function with BER <10−8 for robust chip authentication using oscillator collapse in 40nm CMOS , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[13]  Jae-Yoon Sim,et al.  A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC Without Additional Analog Circuits , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Chun-Cheng Liu 27.4 A 0.35mW 12b 100MS/s SAR-assisted digital slope ADC in 28nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[15]  A.A. Abidi,et al.  Phase Noise and Jitter in CMOS Ring Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[16]  Eric A. M. Klumperink,et al.  A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s , 2010, IEEE Journal of Solid-State Circuits.

[17]  Pierluigi Nuzzo,et al.  Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Sanroku Tsukamoto,et al.  Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC , 2010 .

[19]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[20]  Arthur H. M. van Roermund,et al.  15.4 A 0.8V 10b 80kS/s SAR ADC with duty-cycled reference generation , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.