A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.

Nanoscale mechanical oscillators are used as ultrasensitive detectors of force, mass and charge. Nanomechanical oscillators have also been coupled with optical and electronic resonators to explore the quantum properties of mechanical systems. Here, we report an optomechanical transducer in which a Si(3)N(4) nanomechanical beam is coupled to a disk-shaped optical resonator made of silica on a single chip. We demonstrate a force sensitivity of 74 aN Hz(-1/2) at room temperature with a readout stability better than 1% at the minute scale. Our system is particularly suited for the detection of very weak incoherent forces, which is difficult with existing approaches because the force resolution scales with the fourth root of the averaging time. By applying dissipative feedback based on radiation pressure, we significantly relax this constraint and are able to detect an incoherent force with a force spectral density of just 15 aN Hz(-1/2) (which is 25 times less than the thermal noise) within 35 s of averaging time (which is 30 times less than the averaging time that would be needed in the absence of feedback). It is envisaged that our hybrid on-chip transducer could improve the performance of various forms of force microscopy.

[1]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[2]  M. Lipson,et al.  Controlling photonic structures using optical forces , 2009, Nature.

[3]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[4]  Tobias J. Kippenberg,et al.  Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state , 2010, 1011.0290.

[5]  Kerry J. Vahala,et al.  Fabrication and coupling to planar high-Q silica disk microcavities , 2003 .

[6]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[7]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[8]  L. Pinard,et al.  Towards the experimental demonstration of quantum radiation pressure noise , 2011 .

[9]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[10]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[11]  A. Lemaître,et al.  Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip , 2011, 1108.0680.

[12]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[13]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[14]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[15]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[16]  S. Deleglise,et al.  Determination of the vacuum optomechanical coupling rate using frequency noise calibration. , 2010, Optics express.

[17]  Vladimir S. Ilchenko,et al.  Quality-factor and nonlinear properties of optical Whispering-Gallery modes , 1989 .

[18]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[19]  D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator , 2007 .

[20]  S. Seidelin,et al.  A single NV defect coupled to a nanomechanical oscillator , 2011, 1112.1291.

[21]  Hiroshi Yamaguchi,et al.  Motion detection of a micromechanical resonator embedded in a d.c. SQUID , 2008 .

[22]  T. Briant,et al.  A scheme to probe optomechanical correlations between two optical beams down to the quantum level , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[23]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[24]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[25]  J. Kalkman,et al.  Demonstration of an erbium doped microdisk laser on a silicon chip , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[26]  D. Rugar,et al.  Frequency domain multiplexing of force signals with application to magnetic resonance force microscopy , 2010 .

[27]  A. Heidmann,et al.  Effective mass in quantum effects of radiation pressure , 1999, quant-ph/9901057.

[28]  M. Roukes,et al.  A nanometre-scale mechanical electrometer , 1998, Nature.

[29]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[30]  Oskar Painter,et al.  Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. , 2006, Optics express.

[31]  D. Goldhaber-Gordon,et al.  An off-board quantum point contact as a sensitive detector of cantilever motion , 2008, 0803.1464.

[32]  H. Yamaguchi,et al.  Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator , 2011, 1106.2106.

[33]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[34]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[35]  Jerome Mertz,et al.  Regulation of a microcantilever response by force feedback , 1993 .

[36]  A. Heidmann,et al.  Quantum limits of cold damping with optomechanical coupling , 2001, quant-ph/0107138.

[37]  V. Aksyuk,et al.  Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator. , 2010, Nano letters.

[38]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[39]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2010 .

[40]  W. Pernice,et al.  Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. , 2009, Physical review letters.

[41]  Michael J Biercuk,et al.  Ultrasensitive detection of force and displacement using trapped ions. , 2010, Nature nanotechnology.

[42]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[43]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[44]  K. Vahala,et al.  Injection locking of a trapped-ion phonon laser. , 2010, Physical review letters.

[45]  D. Rugar,et al.  Nanoscale magnetic resonance imaging , 2009, Proceedings of the National Academy of Sciences.

[46]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[47]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[48]  R. Hanson,et al.  Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center , 2009, 0903.3336.

[49]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[50]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[51]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[52]  Oliver Benson,et al.  Fiber-integrated diamond-based single photon source. , 2011, Nano letters.

[53]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[54]  H. Mabuchi,et al.  High-Q measurements of fused-silica microspheres in the near infrared. , 1998, Optics letters.

[55]  Oliver Benson,et al.  A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. , 2011, The Review of scientific instruments.