A complementarity problem formulation for two-dimensional frictional contact problems

[1]  L. E. Goodman Contact Stress Analysis of Normally Loaded Rough Spheres , 1962 .

[2]  C. Panne,et al.  The Simplex and the Dual Method for Quadratic Programming , 1964 .

[3]  J. J. Kalker,et al.  A Minimum Principle for the Law of Dry Friction, With Application to Elastic Cylinders in Rolling Contact—Part 1: Fundamentals—Application to Steady Rolling , 1971 .

[4]  S. Chan,et al.  A finite element method for contact problems of solid bodies—Part I. Theory and validation , 1971 .

[5]  D. A. Spence,et al.  The hertz contact problem with finite friction , 1975 .

[6]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[7]  E. J. Haug,et al.  Analysis of unbonded contact problems by means of quadratic programming , 1976 .

[8]  L. Herrmann Finite Element Analysis of Contact Problems , 1978 .

[9]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[10]  Masaru Nakazawa,et al.  Finite element incremental contact analysis with various frictional conditions , 1979 .

[11]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[12]  J. J. Kalker Numerical Contact Elastostatics , 1980 .

[13]  M. D. Olson,et al.  The mixed finite element method applied to two‐dimensional elastic contact problems , 1981 .

[14]  Francois E. Heuze,et al.  New models for rock joints and interfaces , 1981 .

[15]  Carlos Alberto Brebbia,et al.  Boundary element solution for half-plane problems , 1981 .

[16]  C. Ramakrishnan,et al.  A finite element solution for the two‐dimensional elastic contact problems with friction , 1981 .

[17]  J. Oden,et al.  On some existence and uniqueness results in contact problems with nonlocal friction , 1982 .

[18]  Demosthenes Talaslidis,et al.  A linear finite element approach to the solution of the variational inequalities arising in contact problems of structural dynamics , 1982 .

[19]  J. T. Oden,et al.  Numerical analysis of certain contact problems in elasticity with non-classical friction laws , 1983 .

[20]  B. Torstenfelt,et al.  Contact problems with friction in general purpose finite element computer programs , 1983 .

[21]  Michael G. Katona,et al.  A simple contact–friction interface element with applications to buried culverts , 1983 .

[22]  J. Oden,et al.  Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity , 1983 .

[23]  B. Kwak,et al.  A computational method for elasto-plastic contact problems , 1984 .

[24]  Bo Torstenfelt An automatic incrementation technique for contact problems with friction , 1984 .

[25]  Energy conservation in the transient response of nonlinear beam vibration problems subjected to pulse loading - A numerical approach , 1984 .

[26]  Anil Chaudhary,et al.  A SOLUTION METHOD FOR PLANAR AND AXISYMMETRIC CONTACT PROBLEMS , 1985 .

[27]  N. Kikuchi,et al.  An Incremental Constitutive Relation of Unilateral Contact Friction for Large Deformation Analysis , 1985 .

[28]  Numerical solution of elastic contact problems including friction , 1985 .

[29]  A. Klarbring A mathematical programming approach to three-dimensional contact problems with friction , 1986 .

[30]  Byung Man Kwak,et al.  Analysis and applications of elasto-plastic contact problems considering large deformation , 1986 .