Moment conditions and Bayesian non‐parametrics

Models phrased through moment conditions are central to much of modern inference. Here these moment conditions are embedded within a non‐parametric Bayesian set‐up. Handling such a model is not probabilistically straightforward as the posterior has support on a manifold. We solve the relevant issues, building new probability and computational tools by using Hausdorff measures to analyse them on real and simulated data. These new methods, which involve simulating on a manifold, can be applied widely, including providing Bayesian analysis of quasi‐likelihoods, linear and non‐linear regression, missing data and hierarchical models.

[1]  Anna Simoni,et al.  Gaussian Processes and Bayesian Moment Estimation , 2016, Journal of Business & Economic Statistics.

[2]  Benedict Leimkuhler,et al.  Efficient molecular dynamics using geodesic integration and solvent–solute splitting , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  A. Ronald Gallant,et al.  Reflections on the Probability Space Induced by Moment Conditions with Implications for Bayesian Inference , 2016 .

[4]  Shirin Golchi,et al.  Sequentially Constrained Monte Carlo , 2014, Comput. Stat. Data Anal..

[5]  F. Morgan 1 – Geometric Measure Theory , 2016 .

[6]  Anna Vignoles,et al.  Comparing sample survey measures of English earnings of graduates with administrative data during the Great Recession , 2015 .

[7]  L. Hansen,et al.  Finite Sample Properties of Some Alternative Gmm Estimators , 2015 .

[8]  D. Rubin,et al.  Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction , 2016 .

[9]  D. Rubin,et al.  Causal Inference for Statistics, Social, and Biomedical Sciences: A General Method for Estimating Sampling Variances for Standard Estimators for Average Causal Effects , 2015 .

[10]  Peter D. Hoff,et al.  Marginally specified priors for non‐parametric Bayesian estimation , 2012, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[11]  J. M. Sanz-Serna,et al.  Compressible generalized hybrid Monte Carlo. , 2014, The Journal of chemical physics.

[12]  Corwin M Zigler,et al.  Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model-Averaged Causal Effects , 2014, Journal of the American Statistical Association.

[13]  Minchul Shin Bayesian GMM ∗ , 2014 .

[14]  A. Ronald Gallant,et al.  Generalized Method of Moments with Latent Variables , 2013 .

[15]  Ulrich K. Müller RISK OF BAYESIAN INFERENCE IN MISSPECIFIED MODELS, AND THE SANDWICH COVARIANCE MATRIX , 2013 .

[16]  Corwin M Zigler,et al.  Model Feedback in Bayesian Propensity Score Estimation , 2013, Biometrics.

[17]  M. Girolami,et al.  Geodesic Monte Carlo on Embedded Manifolds , 2013, Scandinavian journal of statistics, theory and applications.

[18]  P. Diaconis,et al.  Sampling From A Manifold , 2012, 1206.6913.

[19]  Christian P Robert,et al.  Bayesian computation via empirical likelihood , 2012, Proceedings of the National Academy of Sciences.

[20]  Xuming He,et al.  Bayesian empirical likelihood for quantile regression , 2012, 1207.5378.

[21]  Raquel Urtasun,et al.  A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.

[22]  Gabriel Stoltz,et al.  Langevin dynamics with constraints and computation of free energy differences , 2010, Math. Comput..

[23]  Yingcun Xia,et al.  Semiparametric Regression Models , 2011, International Encyclopedia of Statistical Science.

[24]  V. Ariyabuddhiphongs,et al.  Lottery Gambling: A Review , 2011, Journal of Gambling Studies.

[25]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[26]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[27]  Bradley Efron,et al.  Large-scale inference , 2010 .

[28]  T. Lancaster,et al.  Bayesian quantile regression methods , 2010 .

[29]  Houman Owhadi,et al.  Long-Run Accuracy of Variational Integrators in the Stochastic Context , 2007, SIAM J. Numer. Anal..

[30]  Guosheng Yin,et al.  Bayesian generalized method of moments , 2009 .

[31]  Bayesian propensity score analysis of observational data , 2007 .

[32]  Grace S. Chiu On Identifiability of Covariance Components in Hierar- chical Generalized Analysis of Covariance Models , 2009 .

[33]  Carsten Hartmann,et al.  An Ergodic Sampling Scheme for Constrained Hamiltonian Systems with Applications to Molecular Dynamics , 2008 .

[34]  Han Hong,et al.  A Statistical Inquiry into the Plausibility of Recursive Utility , 2007 .

[35]  C. Tapiero,et al.  DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE , 2007 .

[36]  Yuichi Kitamura,et al.  Empirical Likelihood Methods in Econometrics: Theory and Practice , 2006 .

[37]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[38]  Carsten Hartmann,et al.  A constrained hybrid Monte‐Carlo algorithm and the problem of calculating the free energy in several variables , 2005 .

[39]  Jack A. Taylor,et al.  Approximate Bayesian inference for quantiles , 2005 .

[40]  Carsten Hartmann,et al.  A GEOMETRIC APPROACH TO CONSTRAINED MOLECULAR DYNAMICS AND FREE ENERGY , 2005 .

[41]  Susanne M. Schennach,et al.  Bayesian exponentially tilted empirical likelihood , 2005 .

[42]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[43]  Alastair R. Hall,et al.  Generalized Method of Moments , 2005 .

[44]  Herman K. van Dijk,et al.  Valuing structure, model uncertainty and model averaging in vector autoregressive processes , 2004 .

[45]  É. Renault,et al.  On the Efficient Use of the Informational Content of Estimating Equations: Implied Probabilities and Euclidean Empirical Likelihood , 2004 .

[46]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[47]  N. Lazar Bayesian empirical likelihood , 2003 .

[48]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[49]  E. T. Jaynes,et al.  Probability Theory: Author index , 2003 .

[50]  C. Manski Partial Identification of Probability Distributions , 2003 .

[51]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[52]  Gabriele Fiorentini,et al.  Likelihood-based estimation of latent generalised ARCH structures , 2004 .

[53]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[54]  V. Chernozhukov,et al.  An MCMC Approach to Classical Estimation , 2002, 2301.07782.

[55]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[56]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[57]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[58]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[59]  John Bound,et al.  Measurement error in survey data , 2001 .

[60]  I. Walker,et al.  The welfare effects of lotto: evidence from the UK , 1999 .

[61]  G. Imbens,et al.  Estimating the Effect of Unearned Income on Labor Earnings , Savings , and Consumption : Evidence from a Survey of Lottery Players , 2008 .

[62]  Håvard Rue,et al.  Block updating in constrained Markov chain Monte Carlo sampling , 1999 .

[63]  Yum K. Kwan Asymptotic Bayesian analysis based on a limited information estimator , 1999 .

[64]  Nuala A. Sheehan,et al.  Block updating in constrained Markov chain Monte carlo sampling with application to pedigree analysis. , 1998 .

[65]  Dongchu Sun,et al.  Random Effects in Generalized Linear Mixed Models , 1998 .

[66]  Arnold Zellner,et al.  Bayesian Method of Moments (BMOM) Analysis of Parametric and Semiparametric Regression Models , 1998 .

[67]  Arnold Zellner,et al.  THE BAYESIAN METHOD OF MOMENTS (BMOM) , 1997 .

[68]  G. Imbens,et al.  Nonparametric Applications of Bayesian Inference , 1996 .

[69]  M. Newton,et al.  Bayesian Inference for Semiparametric Binary Regression , 1996 .

[70]  A. Zellner Bayesian Method of Moments (BMOM) Analysis of Mean and Regression Models , 1995, bayes-an/9511001.

[71]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[72]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[73]  G. Imbens,et al.  Information Theoretic Approaches to Inference in Moment Condition Models , 1995 .

[74]  M. Lavine On an approximate likelihood for quantiles , 1995 .

[75]  David A. Jaeger,et al.  Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak , 1995 .

[76]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[77]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[78]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[79]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[80]  J. Angrist,et al.  Does Compulsory School Attendance Affect Schooling and Earnings? , 1990 .

[81]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[82]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[83]  P. Cook,et al.  Selling Hope: State Lotteries in America. , 1990 .

[84]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[85]  A. Gallant,et al.  Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications , 1989 .

[86]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[87]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[88]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[89]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[90]  Hani Doss Bayesian Nonparametric Estimation of the Median; Part I: Computation of the Estimates , 1985 .

[91]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[92]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[93]  D. Rubin The Bayesian Bootstrap , 1981 .

[94]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[95]  H. Fédérer Geometric Measure Theory , 1969 .

[96]  D. Cox Tests of Separate Families of Hypotheses , 1961 .

[97]  V. P. Godambe An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .

[98]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[99]  J. Durbin Estimation of Parameters in Time‐Series Regression Models , 1960 .

[100]  J. Sargan The Estimation of Relationships with Autocorrelated Residuals by the Use of Instrumental Variables , 1959 .

[101]  J. Sargan THE ESTIMATION OF ECONOMIC RELATIONSHIPS USING INSTRUMENTAL VARIABLES , 1958 .

[102]  H. Jeffreys The Theory of Probability , 1896 .

[103]  K. Pearson Contributions to the Mathematical Theory of Evolution , 1894 .