Chemical Substitution and High Pressure Effects on Superconductivity in the LnOBiS2 (Ln = La-Nd) System

Abstract A large number of compounds which contain BiS2 layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS2-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS2 layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS2-based compounds, with special attention given to the compounds in the LnOBiS2 (Ln = La-Nd) system. Strategieswhich are reported to be essential in optimizing superconductivity of these materials will also be discussed.

[1]  Y. Mizuguchi Review of superconductivity in BiS2-based layered materials , 2015 .

[2]  J. M. Chen,et al.  Evidence for two distinct superconducting phases in EuBiS$_2$F under pressure , 2015, 1505.04704.

[3]  K. Tadanaga,et al.  In-plane chemical pressure essential for superconductivity in BiCh2-based (Ch: S, Se) layered structure , 2015, Scientific Reports.

[4]  L. C. Gupta,et al.  Synthesis and properties of SmO0.5F0.5BiS2 and enhancement in Tc in La1-ySmyO0.5F0.5BiS2. , 2014, Inorganic chemistry.

[5]  Fei Gao,et al.  Evidence for nodeless superconductivity in NdO1−xFxBiS2 (x = 0.3 and 0.5) single crystals , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  O. Miura,et al.  Increase in Tc and Change of Crystal Structure by High-Pressure Annealing in BiS2-Based Superconductor CeO0.3F0.7BiS2 , 2014, 1404.6361.

[7]  J. Thompson,et al.  Pressure-enhanced superconductivity in Eu3Bi2S4F4 , 2014, 1412.5446.

[8]  E. Paris,et al.  Determination of local atomic displacements in CeO1−xFxBiS2 system , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  O. Miura,et al.  Evolution of Superconductivity in BiS 2 -Based Superconductor LaO 0.5 F 0.5 Bi(S 1- x Se x ) 2 , 2014, 1410.6775.

[10]  M. Maple,et al.  Effect of yttrium substitution on the superconducting properties ofLa1-xYxO0.5F0.5BiS2 , 2014, 1410.0084.

[11]  O. Miura,et al.  Chemical Pressure Effect on Superconductivity of BiS 2 -Based Ce 1- x Nd x O 1- y F y BiS 2 and Nd 1- z Sm z O 1- y F y BiS 2 , 2014, 1408.2625.

[12]  S. Denholme,et al.  Pressure-induced phase transition for single-crystalline LaO0.5F0.5BiSe2 , 2014, 1408.0108.

[13]  Kai Xu,et al.  Possible charge-density wave, superconductivity, and f-electron valence instability in EuBiS 2 F , 2014, 1407.7132.

[14]  R. Jha,et al.  Hydrostatic Pressure Studies on Parent Phase SrFBiS2 of BiS2-based Superconducting Family , 2014, 1407.6793.

[15]  L. Pi,et al.  Bulk superconductivity in single‐phase Bi3O2S3 , 2014, 1407.5386.

[16]  M. Nagao,et al.  High-Tc Phase of PrO0.5F0.5BiS2 single crystal induced by uniaxial pressure , 2014, 1406.3888.

[17]  E. Paris,et al.  Role of the Ce valence in the coexistence of superconductivity and ferromagnetism of CeO 1-x F x BiS 2 revealed by Ce L 3 -edge x-ray absorption spectroscopy , 2014, 1405.5639.

[18]  O. Miura,et al.  Element Substitution Effect on Superconductivity in BiS2-Based NdO1−xFxBiS2 , 2014, 1404.6359.

[19]  X. Wan,et al.  Electronic structure of single-crystalline NdO 0.5 F 0.5 BiS 2 studied by angle-resolved photoemission spectroscopy , 2014, 1402.2860.

[20]  R. Jha,et al.  Impact of Hydrostatic Pressure on Superconductivity of Sr0.5La0.5FBiS2 , 2014, 1402.0994.

[21]  S. Demura,et al.  Enhancement of T c by Uniaxial Lattice Contraction in BiS 2 -Based Superconductor PrO 0.5 F 0.5 BiS 2 , 2014, 1401.7506.

[22]  M. Nagao,et al.  Crystal structures of LaO1−xFxBiS2 (x~0.23, 0.46): Effect of F doping on distortion of Bi–S plane , 2014, 1401.6814.

[23]  R. Jha,et al.  Superconducting properties of BiS2-based superconductor NdO1−x F x BiS2 (x = 0 to 0.9) , 2014, 1401.4811.

[24]  Y. Mizuguchi Superconductivity in BiS2-based Layered Compounds , 2013, 1311.4270.

[25]  A. Amato,et al.  Superconductivity in a new layered bismuth oxyselenide: LaO0.5F0.5BiSe2 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  M. Nagao,et al.  Growth and superconducting properties of F-substituted ROBiS2 (R=La, Ce, Nd) single crystals , 2013, 1310.1213.

[27]  Xiyu Zhu,et al.  Giant superconducting fluctuation and anomalous semiconducting normal state in NdO1−xFxBi1−yS2 single crystals , 2013, 1310.0377.

[28]  S. Demura,et al.  Pressure-Induced Enhancement of Superconductivity and Structural Transition in BiS 2 -Layered LaO 1- x F x BiS 2 , 2013, 1309.4250.

[29]  H. Takatsu,et al.  Correlation between crystal structure and superconductivity in LaO0.5F0.5BiS2 , 2013, 1306.3346.

[30]  R. Jha,et al.  Superconducting and magneto-transport properties of BiS2 based superconductor PrO1-xFxBiS2 (x = 0 to 0.9) , 2013, 1312.3707.

[31]  S. Denholme,et al.  Coexistence of bulk superconductivity and ferromagnetism in CeO1-xFxBiS2 , 2013, 1311.4267.

[32]  C. Baines,et al.  s-wave pairing in the optimally doped LaO_{0.5}F_{0.5}BiS_{2} superconductor , 2013, 1311.0457.

[33]  A. Amato,et al.  Low superfluid density and possible multigap superconductivity in the BiS2-based layered superconductor Bi4O4S3 , 2013, 1309.7282.

[34]  M. Nagao,et al.  Structural Analysis and Superconducting Properties of F-Substituted NdOBiS2 Single Crystals , 2013, 1309.6400.

[35]  M. Maple,et al.  Enhancement of superconductivity near the pressure-induced semiconductor–metal transition in the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd) , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Dong E. Liu,et al.  Floquet Majorana fermions for topological qubits in superconducting devices and cold-atom systems. , 2013, Physical review letters.

[37]  M. Maple,et al.  Pressure-induced enhancement of superconductivity and suppression of semiconducting behavior in L n O 0.5 F 0.5 BiS 2 ( L n = La ,Ce) compounds , 2013, 1307.4157.

[38]  W. Wang,et al.  Triplet pairing and possible weak topological superconductivity in BiS 2 -based superconductors , 2013, 1307.2394.

[39]  Shruti,et al.  Evidence for fully gapped strong coupling s-wave superconductivity in Bi4O4S3 , 2013, Journal of Physics: Condensed Matter.

[40]  M. Maple,et al.  Superconductivity induced by electron doping in La 1-x M x OBiS 2 (M= Ti, Zr, Hf, Th) , 2013, 1303.6216.

[41]  S. Savrasov,et al.  Electron-phonon superconductivity near charge-density-wave instability in LaO0.5F0.5BiS2: Density-functional calculations , 2013 .

[42]  Y. Takahide,et al.  New Member of BiS2-Based Superconductor NdO1-xFxBiS2 , 2013 .

[43]  Changjin Zhang,et al.  Superconductivity in Vacuum Annealed Bi6O8S5 , 2013 .

[44]  M. Maple,et al.  Superconductivity of F-substituted LnOBiS2 (Ln=La, Ce, Pr, Nd, Yb) compounds , 2013, 1301.3932.

[45]  Xiaofeng Xu,et al.  Superconductivity induced by La doping in Sr 1-x La x FBiS 2 , 2013, 1301.2380.

[46]  G. Ehlers,et al.  Crystal structure, lattice vibrations, and superconductivity of LaO 1 − x F x BiS 2 , 2012, 1212.4811.

[47]  E. Dagotto,et al.  RPA Analysis of a Two-orbital Model for the BiS2-based Superconductors , 2012, 1212.0210.

[48]  T. Yildirim Ferroelectric soft phonons, charge density wave instability, and strong electron-phonon coupling in BiS 2 layered superconductors: A first-principles study , 2012, 1210.2418.

[49]  Shruti,et al.  Appearance of superconductivity in layered LaO0.5F0.5BiS2 , 2012, 1207.6845.

[50]  Jiangping Hu,et al.  Pairing symmetry in layered BiS2 compounds driven by electron-electron correlation , 2012, 1211.5435.

[51]  T. Watanabe,et al.  Evolution of superconductivity in LaO1−xFxBiS2 prepared by high-pressure technique , 2012, 1209.3846.

[52]  H. Wen,et al.  Superconductivity Appears in the Vicinity of an Insulating-Like Behavior in CeO$_{1-x}$F$_{x}$BiS$_{2}$ , 2012, 1208.5000.

[53]  Z. Wang,et al.  Probing the Superconducting Pairing Symmetry from Spin Excitations in BiS2 Based Superconductors , 2012, 1208.1101.

[54]  Shruti,et al.  Bulk superconductivity in bismuth oxysulfide Bi4O4S3. , 2012, Journal of the American Chemical Society.

[55]  K. Kuroki,et al.  Minimal electronic models for superconducting BiS 2 layers , 2012, 1207.3888.

[56]  S. Demura,et al.  Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2 , 2012, 1207.3558.

[57]  S. Demura,et al.  Novel BiS2-based layered superconductor Bi4O4S3 , 2012, 1207.3145.

[58]  Ki-seok Kim Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory , 2009, 0907.1352.

[59]  A. Huq,et al.  Superconductivity in LaFe1-xCoxAsO , 2008, 0807.0823.

[60]  Zhang Lichun,et al.  Canonical Entropy and Phase Transition of Rotating Black Hole , 2008 .

[61]  Liling Sun,et al.  Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs , 2008 .

[62]  Z. Ren,et al.  Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.

[63]  Z. Ren,et al.  Superconductivity at 53.5 K in GdFeAsO1−δ , 2008 .

[64]  Z. Ren,et al.  Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping , 2008, 0804.2582.

[65]  Z. Ren,et al.  Novel Superconductivity and Phase Diagram in the Iron-based Arsenic-oxides ReFeAsO1-delta (Re = rare earth metal) without F-Doping , 2008 .

[66]  Gang Li,et al.  Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. , 2008, Physical review letters.

[67]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[68]  B. Berge,et al.  Thermodynamics and X-ray studies of 2-alcohol monolayers at the air water interface , 1998 .

[69]  Fulcher Issues in QCD and properties of the Upsilon system. , 1989, Physical review. D, Particles and fields.

[70]  Wu Zi-qin,et al.  An X-ray diffraction study on artificial multilayered structure , 1988 .

[71]  R. Roll,et al.  A new model for ZnO:Cu undergoing dynamic Jahn-Teller coupling , 1980 .

[72]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[73]  G. A. Waring,et al.  FACETTED PEBBLES IN EASTERN VENEZUELA. , 1938, Science.