Improved performance of a junctionless tunnel field effect transistor with a Si and SiGe heterostructure for ultra low power applications

In this paper, we present improved device characteristics of a Junctionless Tunnel Field Effect Transistor (JLTFET) with a Si and SiGe heterostructure. Optimization of the device is done for low power applications. Heterojunction engineering is done to optimize the position of the Si:SiGe junction. Subsequently, band gap engineering is incorporated using variations in doping, gate work function, the mole fraction of SiGe and the dielectric constant. Comparison of the optimized, heterostructured silicon channel using numerical simulations indicates that ION increases from 0.12 to 15 μA μm−1, ION/IOFF increases from 4 × 106 to 3 × 109, and the subthreshold slope decreases from 80 to 43 mV dec−1 for a 22 nm channel with a supply voltage of 0.7 V.

[1]  B. Ghosh,et al.  Junctionless Tunnel Field Effect Transistor , 2013, IEEE Electron Device Letters.

[2]  Bahniman Ghosh,et al.  Dual material gate junctionless tunnel field effect transistor , 2014 .

[3]  J. Robertson High dielectric constant oxides , 2004 .

[4]  Chenming Calvin Hu,et al.  Modern Semiconductor Devices for Integrated Circuits , 2009 .

[5]  Self-aligned fabrication of 10 nm wide asymmetric trenches for Si/SiGe heterojunction tunneling field effect transistors using nanoimprint lithography, shadow evaporation, and etching , 2009 .

[6]  Wim Magnus,et al.  Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode , 2008 .

[7]  Giovanni DeMicheli,et al.  Fabrication and characterization of vertically stacked Gate-All-Around Si Nanowire FET arrays , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[8]  Katherine Boucart,et al.  Simulation of Double-Gate Silicon Tunnel FETs with a High-k Gate Dielectric , 2010 .

[9]  C. Hwang,et al.  Permittivity Enhanced Atomic Layer Deposited HfO2 Thin Films Manipulated by a Rutile TiO2 Interlayer , 2010 .

[10]  N. Singh,et al.  High-Performance Poly-Si Vertical Nanowire Thin-Film Transistor and the Inverter Demonstration , 2011, IEEE Electron Device Letters.

[11]  A junctionless tunnel field effect transistor with low subthreshold slope , 2013 .

[12]  Y.Z. Xu,et al.  Two dimensional device simulation and fabrication of mesa SOI vertical dual carrier field effect transistor with effective channel length of 30nm for switching ASIC and SOC , 2005, 2005 6th International Conference on ASIC.

[13]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[14]  P. Asthana,et al.  Optimal design for a high performance H-JLTFET using HfO2 as a gate dielectric for ultra low power applications , 2014 .

[15]  Sorin Cristoloveanu,et al.  Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator , 2009 .

[16]  Bahniman Ghosh,et al.  Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET) , 2013 .

[17]  Abhinav Kranti,et al.  Junctionless 6T SRAM cell , 2010 .

[18]  K. Boucart,et al.  Double-Gate Tunnel FET With High-$\kappa$ Gate Dielectric , 2007, IEEE Transactions on Electron Devices.

[19]  U. Konig N- and p-type Si-SiGe hetero FETs , 2000, 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (Cat. No.00TH8534).

[20]  Youngki Yoon,et al.  Analysis of InAs vertical and lateral band-to-band tunneling transistors: Leveraging vertical tunneling for improved performance , 2010 .

[21]  Jean-Pierre Colinge,et al.  Performance estimation of junctionless multigate transistors , 2010 .

[22]  S. Ganguly,et al.  Enhanced Electrostatic Integrity of Short-Channel Junctionless Transistor With High- $\kappa$ Spacers , 2011, IEEE Electron Device Letters.

[23]  S. Ganguly,et al.  Bulk Planar Junctionless Transistor (BPJLT): An Attractive Device Alternative for Scaling , 2011, IEEE Electron Device Letters.

[24]  J. Hartmann,et al.  Si/SiGe hetero-structure tunneling field effect transistors with in-situ doped SiGe source , 2012, 2012 13th International Conference on Ultimate Integration on Silicon (ULIS).

[25]  K. Boucart,et al.  Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric , 2007 .

[26]  A. Kranti,et al.  Junctionless nanowire transistor (JNT): Properties and design guidelines , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[27]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[28]  M. Orlowski,et al.  Carrier transport near the Si/SiO2 interface of a MOSFET , 1989 .

[29]  Chi-Woo Lee,et al.  Junctionless multigate field-effect transistor , 2009 .

[30]  Abhinav Kranti,et al.  Nanowire zero-capacitor DRAM transistors with and without junctions , 2010, 10th IEEE International Conference on Nanotechnology.

[31]  A. Amara,et al.  Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric , 2010 .

[32]  Sung-Jin Choi,et al.  Nonvolatile Memory by All-Around-Gate Junctionless Transistor Composed of Silicon Nanowire on Bulk Substrate , 2011, IEEE Electron Device Letters.

[33]  A. Schenk A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon , 1992 .

[34]  Walter Riess,et al.  Silicon nanowire tunneling field-effect transistors , 2008 .