Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films
暂无分享,去创建一个
F. Zeng | Jin Luo | Gaoqiang Chen | F. Pan | Xiaolei Zhu
[1] P. Tiberto,et al. High-frequency magnetoimpedance properties in Finemet-type ribbons with a Cu–Co electrodeposited layer , 2010 .
[2] F. Aldinger,et al. Yielding, Strain Hardening, and Creep Under Nanoindentation of Precursor‐Derived Si–C–N Ceramics , 2010 .
[3] F. Zeng,et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers , 2010 .
[4] F. Zeng,et al. Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers , 2010 .
[5] S. Zwaag,et al. Modelling the strength of ultrafine-grained and nanocrystalline fcc metals , 2009 .
[6] Y. Champion,et al. Nanoindentation analysis of the mechanical behavior of Zr-based metallic glasses with Sn, Ta and W additions , 2009 .
[7] C. Ziebert,et al. Concepts for the design of advanced nanoscale PVD multilayer protective thin films , 2009 .
[8] Z. Cao,et al. Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films , 2009 .
[9] J. S. Jang,et al. Berkovich nanoindentation on InP , 2009 .
[10] S. Zwaag,et al. Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics , 2009 .
[11] J. Sarkar,et al. Microstructure, texture and tensile properties of aluminum–2 at.% neodymium alloy as used in flat panel displays , 2009 .
[12] Y. Chiu,et al. Nanoindentation study of Ti-based metallic glasses , 2009 .
[13] T. Zhu,et al. Size dependence of rate-controlling deformation mechanisms in nanotwinned copper , 2009 .
[14] R. Hoagland,et al. Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale , 2009 .
[15] W. Blum,et al. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity , 2009 .
[16] R. Hoagland,et al. Room-temperature dislocation climb in metallic interfaces , 2009 .
[17] Shiguo Long,et al. Indentation scale dependence of tip-in creep behavior in Ni thin films , 2008 .
[18] Y. Liu,et al. High-temperature creep and hardness of eutectic 80Au/20Sn solder , 2008 .
[19] F. Zeng,et al. Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers , 2007 .
[20] S. Hong,et al. Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers , 2007 .
[21] Shanghai Wei,et al. The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)%Sn alloys , 2007 .
[22] H. Zbib,et al. Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers , 2007 .
[23] R. Mahmudi,et al. Investigation of stress exponent in the room-temperature creep of Sn–40Pb–2.5Sb solder alloy , 2007 .
[24] R. Mahmudi,et al. Impression creep behavior of cast Pb–Sb alloys , 2007 .
[25] J. Hirth,et al. Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films , 2005 .
[26] Amit Misra,et al. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .
[27] R. Mahmudi,et al. Room temperature indentation creep of cast Pb–Sb alloys , 2004 .
[28] X. Kewei,et al. An investigation of nanoindentation creep in polycrystalline Cu thin film , 2004 .
[29] M. Nastasi,et al. Formation of misfit dislocations in nanoscale Ni–Cu bilayer films , 2004 .
[30] Amit Misra,et al. Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .
[31] William D. Nix,et al. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .
[32] M. Fivel,et al. Some Investigations on the Effect of Layer Thickness in Multilayer Metal Composites on Mechanical Properties , 2001 .
[33] J. G. Sevillano,et al. Intrinsic size effects in plasticity by dislocation glide , 2001 .
[34] O. Prakash,et al. Creep of metal-type organic compounds—II. Indentation creep , 1996 .
[35] G. Pharr,et al. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .
[36] den Broeder FJ,et al. Nanostructure of Co/Cu multilayers. , 1991, Physical review. B, Condensed matter.
[37] Warren C. Oliver,et al. A new method for analyzing data from continuous depth-sensing microindentation tests , 1990 .
[38] He,et al. Coherent fcc stacking in epitaxial Co/Cu superlattices. , 1989, Physical review. B, Condensed matter.
[39] F. Zeng,et al. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .