Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films

[1]  P. Tiberto,et al.  High-frequency magnetoimpedance properties in Finemet-type ribbons with a Cu–Co electrodeposited layer , 2010 .

[2]  F. Aldinger,et al.  Yielding, Strain Hardening, and Creep Under Nanoindentation of Precursor‐Derived Si–C–N Ceramics , 2010 .

[3]  F. Zeng,et al.  Microstructure and mechanical properties of nanoscale Cu/Ni multilayers , 2010 .

[4]  F. Zeng,et al.  Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers , 2010 .

[5]  S. Zwaag,et al.  Modelling the strength of ultrafine-grained and nanocrystalline fcc metals , 2009 .

[6]  Y. Champion,et al.  Nanoindentation analysis of the mechanical behavior of Zr-based metallic glasses with Sn, Ta and W additions , 2009 .

[7]  C. Ziebert,et al.  Concepts for the design of advanced nanoscale PVD multilayer protective thin films , 2009 .

[8]  Z. Cao,et al.  Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films , 2009 .

[9]  J. S. Jang,et al.  Berkovich nanoindentation on InP , 2009 .

[10]  S. Zwaag,et al.  Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics , 2009 .

[11]  J. Sarkar,et al.  Microstructure, texture and tensile properties of aluminum–2 at.% neodymium alloy as used in flat panel displays , 2009 .

[12]  Y. Chiu,et al.  Nanoindentation study of Ti-based metallic glasses , 2009 .

[13]  T. Zhu,et al.  Size dependence of rate-controlling deformation mechanisms in nanotwinned copper , 2009 .

[14]  R. Hoagland,et al.  Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale , 2009 .

[15]  W. Blum,et al.  A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity , 2009 .

[16]  R. Hoagland,et al.  Room-temperature dislocation climb in metallic interfaces , 2009 .

[17]  Shiguo Long,et al.  Indentation scale dependence of tip-in creep behavior in Ni thin films , 2008 .

[18]  Y. Liu,et al.  High-temperature creep and hardness of eutectic 80Au/20Sn solder , 2008 .

[19]  F. Zeng,et al.  Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers , 2007 .

[20]  S. Hong,et al.  Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers , 2007 .

[21]  Shanghai Wei,et al.  The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)%Sn alloys , 2007 .

[22]  H. Zbib,et al.  Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers , 2007 .

[23]  R. Mahmudi,et al.  Investigation of stress exponent in the room-temperature creep of Sn–40Pb–2.5Sb solder alloy , 2007 .

[24]  R. Mahmudi,et al.  Impression creep behavior of cast Pb–Sb alloys , 2007 .

[25]  J. Hirth,et al.  Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films , 2005 .

[26]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[27]  R. Mahmudi,et al.  Room temperature indentation creep of cast Pb–Sb alloys , 2004 .

[28]  X. Kewei,et al.  An investigation of nanoindentation creep in polycrystalline Cu thin film , 2004 .

[29]  M. Nastasi,et al.  Formation of misfit dislocations in nanoscale Ni–Cu bilayer films , 2004 .

[30]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[31]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[32]  M. Fivel,et al.  Some Investigations on the Effect of Layer Thickness in Multilayer Metal Composites on Mechanical Properties , 2001 .

[33]  J. G. Sevillano,et al.  Intrinsic size effects in plasticity by dislocation glide , 2001 .

[34]  O. Prakash,et al.  Creep of metal-type organic compounds—II. Indentation creep , 1996 .

[35]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[36]  den Broeder FJ,et al.  Nanostructure of Co/Cu multilayers. , 1991, Physical review. B, Condensed matter.

[37]  Warren C. Oliver,et al.  A new method for analyzing data from continuous depth-sensing microindentation tests , 1990 .

[38]  He,et al.  Coherent fcc stacking in epitaxial Co/Cu superlattices. , 1989, Physical review. B, Condensed matter.

[39]  F. Zeng,et al.  Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .