FLUID-STRUCTURE INTERACTION IN BLOOD FLOW

This is a joint work with Andro Mikelić (University of Lyon 1, France), Josip Tambača (University of Zagreb, Croatia), Giovanna Guidoboni (University of Houston, USA), Dr. Craig Hartley (Baylor College of Medicine, USA), Dr. Doreen Rosenstrauch (Texas Heart Institute and The University of Texas Health Science Center at Houston, USA), and Dr. Z. Krajcer (Texas Heart Institute and St. Luke’s Episcopal Hospital, USA).

[1]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[2]  Andro Mikelić,et al.  Effective equations describing the flow of a viscous incompressible fluid through a long elastic tube , 2002 .

[3]  Suncica Canic,et al.  Effective Equations Modeling the Flow of a Viscous Incompressible Fluid through a Long Elastic Tube Arising in the Study of Blood Flow through Small Arteries , 2003, SIAM J. Appl. Dyn. Syst..

[4]  Suncica Canic,et al.  Mathematical Model analysis of Wallstent and Aneurx: dynamic responses of bare-metal endoprosthesis compared with those of stent-graft. , 2005, Texas Heart Institute journal.

[5]  Y C Fung,et al.  New experiments on shear modulus of elasticity of arteries. , 1994, The American journal of physiology.

[6]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[7]  Suncica Canic,et al.  Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries , 2005, Multiscale Model. Simul..

[8]  S. Čanić,et al.  A two-dimensional effective model describing fluid–structure interaction in blood flow: analysis, simulation and experimental validation , 2005 .

[9]  R. Armentano,et al.  Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. , 1995, Circulation research.

[10]  S. Čanić,et al.  Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi‐symmetric vessels , 2003 .

[11]  Philippe Destuynder,et al.  A classification of thin shell theories , 1985 .

[12]  Zvonimir Krajcer,et al.  Design of Optimal Endoprostheses Using Mathematical Modeling Are the mechanical properties of current-generation endografts suboptimal for AAA repair? , 2006 .

[13]  R Armentano,et al.  Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. , 1995, Hypertension.

[14]  J D Humphrey,et al.  Mechanics of the arterial wall: review and directions. , 1995, Critical reviews in biomedical engineering.

[15]  Suncica Canic,et al.  Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow , 2006, SIAM J. Appl. Math..

[16]  R. Vito,et al.  Blood vessel constitutive models-1995-2002. , 2003, Annual review of biomedical engineering.

[17]  Philippe G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations , 1996 .

[18]  B. Miara,et al.  Asymptotic analysis of linearly elastic shells , 1996 .

[19]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[20]  J. Grotberg,et al.  BIOFLUID MECHANICS IN FLEXIBLE TUBES , 2001 .

[21]  R. D. Bauer,et al.  Separate determination of the pulsatile elastic and viscous forces developed in the arterial wall in vivo , 2004, Pflügers Archiv.

[22]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[23]  Giovanna Guidoboni,et al.  Blood Flow in Compliant Arteries: An Effective Viscoelastic Reduced Model, Numerics, and Experimental Validation , 2006, Annals of Biomedical Engineering.

[24]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .