CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations

[1]  A. Walsh,et al.  Title Electronic structure and defect physics of tin sulfides : SnS , Sn 2 S 3 , and SnS 2 , 2019 .

[2]  Maciej Haranczyk,et al.  PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators , 2016, Comput. Phys. Commun..

[3]  Stéphane Jobic,et al.  Presentation of the PyDEF post-treatment Python software to compute publishable charts for defect energy formation , 2017 .

[4]  E. Kaxiras,et al.  Strain effects on the behavior of isolated and paired sulfur vacancy defects in monolayer MoS 2 , 2017 .

[5]  E. Kaxiras,et al.  Accurate formation energies of charged defects in solids: A systematic approach , 2017, 1701.02521.

[6]  D. Demchenko,et al.  Native Point Defects in GaN: A Hybrid-Functional Study , 2016 .

[7]  Aron Walsh,et al.  Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn 2 S 3 , and Sn S 2 , 2016 .

[8]  A. Janotti,et al.  Point defects, impurities, and small hole polarons in GdTiO$_3$ , 2016 .

[9]  Structural and electronic properties of perfect and defective BN nanoribbons: A DFT study , 2015 .

[10]  Anton Van der Ven,et al.  First-principles survey of the structure, formation energies, and transition levels of As-interstitial defects in InGaAs , 2015 .

[11]  S. Zhang,et al.  Determination of formation and ionization energies of charged defects in two-dimensional materials. , 2015, Physical review letters.

[12]  Weiwei Sun,et al.  Structure and energy of point defects in TiC : An ab initio study , 2015 .

[13]  A. Pasquarello,et al.  First-principles determination of defect energy levels through hybrid density functionals and GW , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  A. Krasheninnikov,et al.  Native defects in bulk and monolayer MoS 2 from first principles , 2015 .

[15]  Y. Kawazoe,et al.  Native point defects in few-layer phosphorene , 2014, 1409.5171.

[16]  A. Krasheninnikov,et al.  Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials , 2014 .

[17]  A. Janotti,et al.  First-principles study of vacancy-assisted impurity diffusion in ZnO , 2014 .

[18]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[19]  James R. Chelikowsky,et al.  An effective capacitance model for computing the electronic properties of charged defects in crystals , 2014, Comput. Phys. Commun..

[20]  Yong-Sung Kim,et al.  Stability and electronic structures of native defects in single-layer MoS 2 , 2014 .

[21]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[22]  Takat B. Rawal,et al.  Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application , 2014 .

[23]  K. Chang,et al.  Finite-size supercell correction scheme for charged defects in one-dimensional systems , 2014, 1402.5733.

[24]  S. Louie,et al.  First-principles DFT plus GW study of oxygen vacancies in rutile TiO2 , 2014, 1407.5706.

[25]  F. Oba,et al.  Electrostatics-based finite-size corrections for first-principles point defect calculations , 2014, 1402.1226.

[26]  A. Singh,et al.  Low formation energy and kinetic barrier of Stone–Wales defect in infinite and finite silicene , 2014 .

[27]  A. Pasquarello,et al.  Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory , 2013 .

[28]  Simon Kurasch,et al.  From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation , 2013 .

[29]  A. Pasquarello,et al.  Finite-size supercell correction for charged defects at surfaces and interfaces. , 2013, Physical review letters.

[30]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[31]  S. Louie,et al.  Mechanism for optical initialization of spin in NV − center in diamond , 2012 .

[32]  S. Bishop,et al.  Point Defects in Oxides: Tailoring Materials Through Defect Engineering , 2011 .

[33]  S. Louie,et al.  Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia. , 2011, Physical review letters.

[34]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[35]  B. Yakobson,et al.  Vacancy clusters in graphane as quantum dots. , 2010, ACS nano.

[36]  Somnath Bhowmick,et al.  Anisotropy of the Stone-Wales defect and warping of graphene nanoribbons: a first-principles analysis , 2010 .

[37]  Zhongfang Chen,et al.  Electronic Structure and Reactivity of Boron Nitride Nanoribbons with Stone-Wales Defects. , 2009, Journal of chemical theory and computation.

[38]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[40]  Nicholas D. M. Hine,et al.  Supercell size scaling of density functional theory formation energies of charged defects , 2009 .

[41]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[42]  J. Nowotny,et al.  Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2‐Based Photocatalysts , 2008 .

[43]  J. Nowotny,et al.  Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts† , 2008 .

[44]  Boris Kozinsky,et al.  Electrostatics in periodic boundary conditions and real-space corrections , 2007, 0709.4647.

[45]  M. L. Tiago,et al.  Optical excitations in organic molecules, clusters, and defects studied by first-principles Green's function methods , 2006, cond-mat/0605248.

[46]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[47]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[48]  J. Chelikowsky,et al.  Charge state dependent Jahn-Teller distortions of the e-center defect in crystalline Si. , 2003, Physical review letters.

[49]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[50]  Guido Rossum,et al.  Python Reference Manual , 2000 .

[51]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[52]  A. Canning,et al.  Extended Si |P[311|P] defects , 1996, cond-mat/9611145.

[53]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[54]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[55]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[56]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[57]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .