Empirical mathematics: the first patterson extension of gauss-kronrod rules
暂无分享,去创建一个
[1] Giovanni Monegato,et al. Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights , 1978 .
[2] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[3] T. J. Rivlin,et al. A family of Gauss-Kronrod quadrature formulae , 1988 .
[4] G. Szegö,et al. Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören , 1935 .
[5] Thomas N. L. Patterson,et al. An algorithm for generating interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions , 1989, TOMS.
[6] Walter Gautschi,et al. On the computing Gauss-Kronrod Quadrature Formulae , 1986 .
[7] Sotirios E. Notaris. Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szego¨ type, II , 1990 .
[8] Giovanni Monegato. An overview of results and questions related to Kronrod schemes , 1979 .
[9] Thomas N. L. Patterson,et al. Algorithm 468: algorithm for automatic numerical integration over a finite interval [D1] , 1973, CACM.
[10] Jaroslav Kautsky,et al. Gauss quadratures and Jacobi matrices for weight functions not of one sign , 1984 .
[11] G. Monegato. A note on extended Gaussian quadrature rules , 1976 .
[12] Giovanni Monegato,et al. Stieltjes Polynomials and Related Quadrature Rules , 1982 .
[13] Sotirios E. Notaris,et al. An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions , 1988 .
[14] Giovanni Monegato,et al. Positivity of the weights of extended Gauss-Legendre quadrature rules , 1978 .
[15] P. Rabinowitz. On the definiteness of Gauss-Kronrod integration rules , 1986 .
[16] Philip Rabinowitz,et al. Gauss-Kronrod integration rules for Cauchy principal value integrals , 1983 .
[17] Philip Rabinowitz,et al. The exact degree of precision of generalized Gauss-Kronrod integration rules , 1980 .