Synthesis of Multi-Beam Sub-Arrayed Antennas Through an Excitation Matching Strategy

An innovative synthesis procedure to design sub-arrayed antennas affording multiple patterns is presented in this paper. The approach is based on an excitation matching procedure aimed at generating one optimal pattern and multiple compromises close as much as possible to user-defined reference beams. A suitable modification of the K-means clustering algorithm integrated into a customized version of the contiguous partition method is used to efficiently sample the solution space looking for the best compromise excitations. A set of representative numerical results is reported to give some indications on the reliability, potentialities, and limitations of the proposed approach.

[1]  Robert S. Elliott,et al.  Shaped-pattern synthesis using pure real distributions , 1988 .

[2]  P. Rocca,et al.  An Innovative Approach Based on a Tree-Searching Algorithm for the Optimal Matching of Independently Optimum Sum and Difference Excitations , 2008, IEEE Transactions on Antennas and Propagation.

[3]  Derek A. McNamara,et al.  Synthesis of sub-arrayed monopulse linear arrays through matching of independently optimum sum and difference excitations , 1988 .

[4]  P. Rocca,et al.  A Hybrid Approach to the Synthesis of Subarrayed Monopulse Linear Arrays , 2009, IEEE Transactions on Antennas and Propagation.

[5]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[6]  E. Moreno,et al.  Optimal compromise among sum and difference patterns , 1996 .

[7]  C.L. Dolph,et al.  A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level , 1946, Proceedings of the IRE.

[8]  Walter D. Fisher On Grouping for Maximum Homogeneity , 1958 .

[9]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[10]  E. Moreno,et al.  Synthesis of shaped line-source antenna beams using pure real distributions , 1994 .

[11]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[12]  Roberto Vescovo,et al.  Multi-beam synthesis with null constraints by phase control for antenna arrays of arbitrary geometry , 2007 .

[13]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[14]  T. Taylor Design of line-source antennas for narrow beamwidth and low side lobes , 1955 .

[15]  E. Bayliss Design of monopulse antenna difference patterns with low sidelobes , 1968 .

[16]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[17]  Derek A. McNamara,et al.  Direct synthesis of optimum difference patterns for discrete linear arrays using Zolotarev distributions , 1993 .

[18]  Constantine A. Balanis,et al.  Modern Antenna Handbook , 2012 .

[19]  T. Isernia,et al.  An Effective Hybrid Approach for the Optimal Synthesis of Monopulse Antennas , 2007, IEEE Transactions on Antennas and Propagation.

[20]  R.J. Mailloux,et al.  Phased array theory and technology , 1981, Proceedings of the IEEE.

[21]  A. Massa,et al.  Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method , 2005, IEEE Transactions on Antennas and Propagation.

[22]  A. Villeneuve,et al.  Taylor patterns for discrete arrays , 1984 .

[23]  Z. Nie,et al.  The Application of a Modified Differential Evolution Strategy to Some Array Pattern Synthesis Problems , 2008, IEEE Transactions on Antennas and Propagation.

[24]  E. Moreno,et al.  Subarray weighting for the difference patterns of monopulse antennas: joint optimization of subarray configurations and weights , 2001 .

[25]  R. Haupt,et al.  Optimized Weighting of Uniform Subarrays of Unequal Sizes , 2007, IEEE Transactions on Antennas and Propagation.

[26]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[27]  Derek A. McNamara Discrete ñ-distribution for difference patterns , 1986 .

[28]  F. Ares,et al.  Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: modified Woodward-Lawson synthesis , 2000 .

[29]  N. Toyama,et al.  Aperiodic array consisting of subarrays for use in small mobile Earth stations , 2005, IEEE Transactions on Antennas and Propagation.

[30]  K. Rao,et al.  Low sidelobe design considerations of large linear array antennas with contiguous subarrays , 1987 .

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  J. E. Page,et al.  A Switchable Multiple Beam Antenna for GSM-UMTS Base Stations in Planar Technology , 2006, IEEE Transactions on Antennas and Propagation.

[33]  Francisco J. Ares-Pena,et al.  Synthesising Taylor and Bayliss linear distributions with common aperture tail , 2009 .

[34]  Y. Rahmat-Samii,et al.  Two-pattern linear array antenna: synthesis and analysis of tolerance , 2004 .

[35]  Liu Feng,et al.  A new multi-beam forming method for large array , 2009, 2009 IEEE Radar Conference.

[36]  Derek A. McNamara,et al.  Excitations providing maximum directivity for difference arrays of discrete elements , 1987 .