Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems

We propose a family of mimetic discretization schemes for elliptic problems including convection and reaction terms. Our approach is an extension of the mimetic methodology for purely diffusive problems on unstructured polygonal and polyhedral meshes. The a priori error analysis relies on the connection between the mimetic formulation and the lowest order Raviart-Thomas mixed finite element method. The theoretical results are confirmed by numerical experiments.

[1]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[2]  Jeam-Marie Thomas,et al.  Mixed Finite Elements Methods for Convection-Diffusion Problems , 1987 .

[3]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[6]  Mary F. Wheeler,et al.  Superconvergence of the Velocity in Mimetic Finite Difference Methods on Quadrilaterals , 2005, SIAM J. Numer. Anal..

[7]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[8]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[9]  Yves Coudière,et al.  Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes , 2000 .

[10]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[11]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[12]  F. Hermeline,et al.  Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .

[13]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[14]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[15]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[16]  M. Shashkov,et al.  The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .

[17]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[18]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[19]  Thierry Gallouët,et al.  A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .

[20]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[21]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..

[22]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[23]  M. Shashkov,et al.  Mimetic Finite Difference Methods for Diffusion Equations , 2002 .

[24]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[25]  Mikhail Shashkov,et al.  Approximation of boundary conditions for mimetic finite-difference methods , 1998 .

[26]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Hexahedral Meshes , 2001 .

[27]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .

[28]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[29]  Konstantin Lipnikov,et al.  High-order mimetic finite difference method for diffusion problems on polygonal meshes , 2008, J. Comput. Phys..

[30]  Enrico Bertolazzi,et al.  Algorithm 817: P2MESH: generic object-oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers , 2002, TOMS.

[31]  F. Boyer,et al.  Discrete duality finite volume schemes for Leray−Lions−type elliptic problems on general 2D meshes , 2007 .

[32]  Jérôme Droniou Error estimates for the convergence of a finite volume discretization of convection-diffusion equations , 2003 .

[33]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Convection-diffusion Problems , 2010, SIAM J. Numer. Anal..

[34]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[35]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[36]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .