Abnormal Chest X-Ray Identification With Generative Adversarial One-Class Classifier

Being one of the most common diagnostic imaging tests, chest radiography requires timely reporting of potential findings in the images. In this paper, we propose an end-to-end architecture for abnormal chest X-ray identification using generative adversarial one-class learning. Unlike previous approaches, our method takes only normal chest X-ray images as input. The architecture is composed of three deep neural networks, each of which learned by competing while collaborating among them to model the underlying content structure of the normal chest X-rays. Given a chest X-ray image in the testing phase, if it is normal, the learned architecture can well model and reconstruct the content; if it is abnormal, since the content is unseen in the training phase, the model would perform poorly in its reconstruction. It thus enables distinguishing abnormal chest X-rays from normal ones. Quantitative and qualitative experiments demonstrate the effectiveness and efficiency of our approach, where an AUC of 0.841 is achieved on the challenging NIH Chest X-ray dataset in a one-class learning setting, with the potential in reducing the workload for radiologists.

[1]  E. J. Yates,et al.  Machine learning "red dot": open-source, cloud, deep convolutional neural networks in chest radiograph binary normality classification. , 2018, Clinical radiology.

[2]  Yuxing Tang,et al.  Attention-Guided Curriculum Learning for Weakly Supervised Classification and Localization of Thoracic Diseases on Chest Radiographs , 2018, MLMI@MICCAI.

[3]  Don R. Hush,et al.  Network constraints and multi-objective optimization for one-class classification , 1996, Neural Networks.

[4]  Mahmood Fathy,et al.  Adversarially Learned One-Class Classifier for Novelty Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[6]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[7]  Shahrokh Valaee,et al.  Generalization of Deep Neural Networks for Chest Pathology Classification in X-Rays Using Generative Adversarial Networks , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[9]  Tanveer F. Syeda-Mahmood,et al.  Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).