Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration

[1]  C. Murry,et al.  Hallmarks of cardiac regeneration , 2018, Nature Reviews Cardiology.

[2]  C. Don,et al.  Human ESC-Derived Cardiomyocytes Restore Function in Infarcted Hearts of Non-Human Primates , 2018, Nature Biotechnology.

[3]  Jing Wang,et al.  WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit , 2017, Nucleic Acids Res..

[4]  Thomas Eschenhagen,et al.  Engineering Cardiac Muscle Tissue: A Maturating Field of Research. , 2017, Circulation research.

[5]  B. Hadland,et al.  Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells , 2016, Nature Protocols.

[6]  H. Reichenspurner,et al.  Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells , 2016, Science Translational Medicine.

[7]  Lil Pabon,et al.  Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue , 2016, Circulation.

[8]  J. Nakai,et al.  Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts , 2016, Nature.

[9]  Milica Radisic,et al.  Distilling complexity to advance cardiac tissue engineering , 2016, Science Translational Medicine.

[10]  D. Iyer,et al.  Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation , 2016, Stem cells translational medicine.

[11]  Mark D. Huffman,et al.  Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association , 2016, Circulation.

[12]  R. Moon,et al.  Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling , 2016, Proceedings of the National Academy of Sciences.

[13]  W. L. Ruzzo,et al.  Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes , 2015, Journal of Cell Science.

[14]  R. Passier,et al.  Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells , 2015, Development.

[15]  Tobias Heckel,et al.  Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells , 2015, Nature Cell Biology.

[16]  Kaytlyn A. Gerbin,et al.  Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts , 2015, PloS one.

[17]  Gordon Keller,et al.  Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell‐Derived Progenitors , 2015, Stem cells.

[18]  Lil Pabon,et al.  Cardiac Development in Zebrafish and Human Embryonic Stem Cells Is Inhibited by Exposure to Tobacco Cigarettes and E-Cigarettes , 2015, PloS one.

[19]  R. Pedersen,et al.  Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells , 2015, Development.

[20]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[21]  S. Kattman,et al.  The generation of the epicardial lineage from human pluripotent stem cells , 2014, Nature Biotechnology.

[22]  B. Cui,et al.  Chemically Defined and Small Molecule-Based Generation of Human Cardiomyocytes , 2014, Nature methods.

[23]  Valeria V Orlova,et al.  Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells , 2014, Nature Protocols.

[24]  Charles E. Murry,et al.  Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts , 2014, Nature.

[25]  K. Yutzey,et al.  Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. , 2013, Journal of molecular and cellular cardiology.

[26]  Ravi Karra,et al.  Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. , 2013, Developmental biology.

[27]  Atsushi Izawa,et al.  hESC-Derived Cardiomyocytes Electrically Couple and Suppress Arrhythmias in Injured Hearts , 2012, Nature.

[28]  Sean P. Palecek,et al.  Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling , 2012, Proceedings of the National Academy of Sciences.

[29]  M. Trotter,et al.  Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility , 2012, Nature Biotechnology.

[30]  D. Atsma,et al.  Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells , 2011, Journal of cellular and molecular medicine.

[31]  Gordon Keller,et al.  SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells , 2011, Nature Biotechnology.

[32]  Aaron R. Quinlan,et al.  BamTools: a C++ API and toolkit for analyzing and managing BAM files , 2011, Bioinform..

[33]  E. Olson,et al.  Transient Regenerative Potential of the Neonatal Mouse Heart , 2011, Science.

[34]  Adam J Engler,et al.  Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. , 2011, Biomaterials.

[35]  J. Vrolijk,et al.  Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. , 2010, Journal of molecular and cellular cardiology.

[36]  Robert E. Poelmann,et al.  A New Direction for Cardiac Regeneration Therapy: Application of Synergistically Acting Epicardium-Derived Cells and Cardiomyocyte Progenitor Cells , 2009, Circulation. Heart failure.

[37]  Robert E. Poelmann,et al.  A New Direction for Cardiac Regeneration TherapyCLINICAL PERSPECTIVE , 2009 .

[38]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[39]  D. Srivastava,et al.  Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. , 2009, Developmental cell.

[40]  Yunfu Sun,et al.  A myocardial lineage derives from Tbx18 epicardial cells , 2008, Nature.

[41]  D. Porras,et al.  Temporal–spatial ablation of neural crest in the mouse results in cardiovascular defects , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[42]  Lila R Collins,et al.  Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts , 2007, Nature Biotechnology.

[43]  D. Atsma,et al.  Preservation of Left Ventricular Function and Attenuation of Remodeling After Transplantation of Human Epicardium-Derived Cells Into the Infarcted Mouse Heart , 2007, Circulation.

[44]  D. Atsma,et al.  Epicardial Cells of Human Adults Can Undergo an Epithelial‐to‐Mesenchymal Transition and Obtain Characteristics of Smooth Muscle Cells In Vitro , 2007, Stem cells.

[45]  R. Roberts,et al.  A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration , 2006, Cell.

[46]  J. Pérez-Pomares,et al.  In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells † , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[47]  A. Lassar,et al.  Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. , 2003, Developmental biology.

[48]  A. G. Gittenberger-de Groot,et al.  Epicardial Outgrowth Inhibition Leads to Compensatory Mesothelial Outflow Tract Collar and Abnormal Cardiac Septation and Coronary Formation , 2000, Circulation research.

[49]  A. McMahon,et al.  Fate of the mammalian cardiac neural crest. , 2000, Development.

[50]  J. Männer Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail‐chick chimera study tracing the fate of the epicardial primordium , 1999, The Anatomical record.

[51]  M. Pittenger,et al.  Multilineage potential of adult human mesenchymal stem cells. , 1999, Science.

[52]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. McMurray,et al.  Clinical epidemiology of heart failure: public and private health burden. , 1998, European heart journal.

[54]  A. G. Gittenberger-de Groot,et al.  Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. , 1998, Circulation research.

[55]  J. Cleland,et al.  Should we screen for asymptomatic left ventricular dysfunction to prevent heart failure? , 1998, European heart journal.

[56]  W. Denetclaw,et al.  Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. , 1998, Developmental biology.

[57]  E. Braunwald Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. , 1997, The New England journal of medicine.

[58]  R. Kelly,et al.  Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. , 1992, Circulation research.

[59]  M. Kirby,et al.  Neural crest cells contribute to normal aorticopulmonary septation. , 1983, Science.

[60]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..