Transparent plasmonic nanowire electrodes via self-organised ion beam nanopatterning.

A self-organised approach for the synthesis of transparent metal nanowire arrays is based on defocused ion beam sputtering. The nanowire arrays, supported on low-cost dielectric substrates (glass slides), feature a dual functionality: they exhibit anisotropic conductivity, with sheet resistances which are reduced in comparison to those of transparent conductive oxides, and additionally they support localised plasmon resonances. The latter represents an attractive feature in view of plasmon enhanced photon harvesting applications, in which the nanostructured metal electrodes are employed as an alternative to conventional transparent conductive oxides.

[1]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[2]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[3]  A. Toma,et al.  Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality , 2010 .

[4]  J. C. Scott,et al.  Degradation and failure of MEH‐PPV light‐emitting diodes , 1996 .

[5]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[6]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .

[7]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[8]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[9]  S. Chua,et al.  A mechanical assessment of flexible optoelectronic devices , 2001 .

[10]  M. Uhrmacher,et al.  Ion induced nanoscale surface ripples on ferromagnetic films with correlated magnetic texture , 2007 .

[11]  M. Jenko,et al.  Erosive versus shadowing instabilities in the self-organized ion patterning of polycrystalline metal films , 2008 .

[12]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[13]  L. Jay Guo,et al.  Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes , 2008 .

[14]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Reggiani,et al.  Scaling and universality in electrical failure of thin films , 2000, Physical review letters.

[16]  Thomas H. Reilly,et al.  Surface-plasmon enhanced transparent electrodes in organic photovoltaics , 2008 .

[17]  M. Allegrini,et al.  Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires. , 2011, ACS nano.

[18]  T. Kuan,et al.  Alteration of Cu conductivity in the size effect regime , 2004 .

[19]  Ronn Andriessen,et al.  Printable anodes for flexible organic solar cell modules , 2004 .

[20]  P. Karmakar,et al.  Ion beam sputtering induced ripple formation in thin metal films , 2003, cond-mat/0311301.

[21]  S. Dew,et al.  Self-organized Cu nanowires on glass and Si substrates from sputter etching Cu/substrate interfaces , 2006 .

[22]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[23]  Terry Alford,et al.  Agglomeration and percolation conductivity , 2001 .

[24]  A. Toma,et al.  Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves , 2012 .

[25]  L. Jay Guo,et al.  Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light‐Emitting Diodes , 2007 .

[26]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[27]  T. Seong,et al.  Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes , 2005 .

[28]  Shanhui Fan,et al.  Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. , 2010, Nano letters.

[29]  M. Jenko,et al.  Patterning polycrystalline thin films by defocused ion beam: The influence of initial morphology on the evolution of self-organized nanostructures , 2008 .