Effects of dorsal or ventral medial prefrontal cortical lesions on five-choice serial reaction time performance in rats

[1]  N. Mackintosh A Theory of Attention: Variations in the Associability of Stimuli with Reinforcement , 1975 .

[2]  J. Pearce,et al.  A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980, Psychological review.

[3]  J. Pearce,et al.  A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980 .

[4]  O. Ottersen,et al.  Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase , 1982, The Journal of comparative neurology.

[5]  E. Crosby,et al.  Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon , 1982 .

[6]  K. Sripanidkulchai,et al.  The indusium griseum and anterior hippocampal continuation in the rat , 1983, The Journal of comparative neurology.

[7]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[8]  M. Cassell,et al.  Topography of projections from the medial prefrontal cortex to the amygdala in the rat , 1986, Brain Research Bulletin.

[9]  L. Hersh,et al.  Prefrontal cortical projections to the cholinergic neurons in the basal forebrain , 1991, The Journal of comparative neurology.

[10]  M. Gallagher,et al.  Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. , 1993, Behavioral neuroscience.

[11]  Jeremy K. Seamans,et al.  Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. , 1995, Behavioral neuroscience.

[12]  J. Muir,et al.  The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. , 1996, Cerebral cortex.

[13]  M. Sarter,et al.  Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. , 1996, Behavioral neuroscience.

[14]  D. Macneil,et al.  Distribution of orexin receptor mRNA in the rat brain , 1998, FEBS letters.

[15]  Philip J. Bushnell,et al.  Behavioral approaches to the assessment of attention in animals , 1998, Psychopharmacology.

[16]  P. Holland,et al.  Amygdala circuitry in attentional and representational processes , 1999, Trends in Cognitive Sciences.

[17]  R. Kesner,et al.  Involvement of the Prelimbic–Infralimbic Areas of the Rodent Prefrontal Cortex in Behavioral Flexibility for Place and Response Learning , 1999, The Journal of Neuroscience.

[18]  G. Schoenbaum,et al.  Functions of the Amygdala and Related Forebrain Areas in Attention and Cognition , 1999, Annals of the New York Academy of Sciences.

[19]  T. Robbins,et al.  Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task , 2000, The European journal of neuroscience.

[20]  P. Holland,et al.  The influence of associability changes in negative patterning and other discriminations. , 2000, Journal of experimental psychology. Animal behavior processes.

[21]  H. Groenewegen,et al.  The prefrontal cortex and the integration of sensory, limbic and autonomic information. , 2000, Progress in brain research.

[22]  V. Brown,et al.  Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat , 2000, The Journal of Neuroscience.

[23]  P. Holland,et al.  Lesions of the Amygdala Central Nucleus Alter Performance on a Selective Attention Task , 2000, The Journal of Neuroscience.

[24]  M. Sarter,et al.  Sustained Visual Attention Performance-Associated Prefrontal Neuronal Activity: Evidence for Cholinergic Modulation , 2000, The Journal of Neuroscience.

[25]  J. Muir,et al.  Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? , 2001, Behavioral neuroscience.

[26]  T. Robbins,et al.  Selective Behavioral and Neurochemical Effects of Cholinergic Lesions Produced by Intrabasalis Infusions of 192 IgG-Saporin on Attentional Performance in a Five-Choice Serial Reaction Time Task , 2002, The Journal of Neuroscience.

[27]  T. Robbins,et al.  The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry , 2002, Psychopharmacology.

[28]  T. Robbins,et al.  The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. , 2002, Cerebral cortex.

[29]  H. Groenewegen,et al.  The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics , 2003, Neuroscience & Biobehavioral Reviews.

[30]  T. Robbins,et al.  Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity , 2003, Behavioural Brain Research.

[31]  A. Kelley,et al.  Overlapping distributions of orexin/hypocretin‐ and dopamine‐β‐hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress , 2003, The Journal of comparative neurology.

[32]  M. Pelley The Role of Associative History in Models of Associative Learning: A Selective Review and a Hybrid Model: , 2004 .

[33]  Trevor W. Robbins,et al.  Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task , 2005, Psychopharmacology.

[34]  M. L. Le Pelley The Role of Associative History in Models of Associative Learning: A Selective Review and a Hybrid Model , 2004, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[35]  R. Vertes Differential projections of the infralimbic and prelimbic cortex in the rat , 2004, Synapse.

[36]  Trevor W Robbins,et al.  Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. , 2004, Cerebral cortex.

[37]  D. S. Zahm,et al.  Specificity in the Projections of Prefrontal and Insular Cortex to Ventral Striatopallidum and the Extended Amygdala , 2005, The Journal of Neuroscience.

[38]  P. Gisquet-Verrier,et al.  The role of the rat prelimbic/infralimbic cortex in working memory: Not involved in the short-term maintenance but in monitoring and processing functions , 2006, Neuroscience.

[39]  Martin Sarter,et al.  Augmented prefrontal acetylcholine release during challenged attentional performance. , 2006, Cerebral cortex.

[40]  S. Floresco,et al.  Cerebral Cortex doi:10.1093/cercor/bhl073 Thalamic--Prefrontal Cortical--Ventral Striatal Circuitry Mediates Dissociable Components of Strategy Set Shifting , 2006 .

[41]  P. Holland,et al.  Dissociation of attention in learning and action: effects of lesions of the amygdala central nucleus, medial prefrontal cortex, and posterior parietal cortex. , 2007, Behavioral neuroscience.

[42]  P. Holland Disconnection of the amygdala central nucleus and the substantia innominata/nucleus basalis magnocellularis disrupts performance in a sustained attention task. , 2007, Behavioral neuroscience.

[43]  D. S. Zahm,et al.  Glutamatergic Afferents of the Ventral Tegmental Area in the Rat , 2007, The Journal of Neuroscience.

[44]  R. Vertes,et al.  Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat , 2007, Brain Structure and Function.

[45]  S. Floresco,et al.  Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure , 2008, Behavioural Brain Research.

[46]  H. Eichenbaum,et al.  Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting , 2008, Neuroscience.