Measurement of lattice strain in Au–Ni multilayers and correlation with biaxial modulus effects

Measurement of lattice strain within each atomic plane of sputter‐deposited, gold–nickel multilayer films is accomplished using x‐ray diffraction and high resolution electron microscopy. Experimental determination of strain along the composition modulation direction [1 −1 1] from x‐ray diffraction scans fit to dynamical theory compare well with values measured from high‐resolution electron micrographs and selected‐area‐diffraction patterns. The measured strain in‐plane (2 2 0) and along the composition modulation (1 −1 1) reveal the gold layers to be in compression and the nickel layers in tension. The experimental strain values are used within the framework of the ‘‘coherency strain model’’ to predict an enhancement of the biaxial elastic modulus Y(111), which is in good agreement with the original experimental measurements on thermal‐evaporated films.

[1]  A. Jankowski,et al.  Analysis of the Strain Profile in Thin Au/Ni Multilayers by X-Ray Diffraction , 1992 .

[2]  A. Khachaturyan,et al.  Interfacial displacements in multilayers with similar lattices , 1990 .

[3]  A. Jankowski,et al.  Interface phenomena in multilayers , 1990 .

[4]  M. Wall,et al.  Atomic imaging of Au/Ni multilayers , 1989 .

[5]  Lee Ch,et al.  Structural studies of Co/Cr multilayered thin films. , 1989 .

[6]  A. Jankowski Origin of the supermodulus effect: artificial ordering considerations , 1989 .

[7]  A. Jankowski Lattice spacing variations in gold-nickel superlattices , 1989 .

[8]  A. Jankowski The strain wave approach to modulus enhancement and stability of metallic multilayers , 1989 .

[9]  Wolf,et al.  Structurally induced supermodulus effect in superlattices. , 1988, Physical review letters.

[10]  A. Jankowski Modelling the supermodulus effect in metallic multilayers , 1988 .

[11]  P. Mikołajczak,et al.  Computer simulation of X-ray spectra of metallic superlattices , 1988 .

[12]  Dodson Atomistic analysis of the enhanced-modulus effect in metallic superlattices. , 1988, Physical review. B, Condensed matter.

[13]  S. Nutt,et al.  Gold-Nickel Multilayer Films: Structure-Property Correlations , 1988 .

[14]  C. Boothroyd,et al.  Specimen preparation methods for the examination of surfaces and interfaces in the transmission electron microscope , 1985 .

[15]  A. Jankowski,et al.  The effect of strain on the elastic constants of noble metals , 1985 .

[16]  J. E. Hilliard,et al.  Elastic modulus in composition‐modulated silver‐palladium and copper‐gold foils , 1983 .

[17]  L. Walker,et al.  Magnetic behavior and structure of compositionally modulated Cu-Ni thin films , 1982 .

[18]  J. E. Hilliard,et al.  Enhanced elastic modulus in composition‐modulated gold‐nickel and copper‐palladium foils , 1977 .

[19]  D. Taupin,et al.  Théorie dynamique de la diffraction des rayons X par les cristaux déformés , 1964 .

[20]  S. Takagi Dynamical theory of diffraction applicable to crystals with any kind of small distortion , 1962 .

[21]  O. Scherzer The Theoretical Resolution Limit of the Electron Microscope , 1949 .