Accelerating Parameter Synthesis Using Semi-algebraic Constraints

We propose a novel approach to parameter synthesis for parametrised Kripke structures and CTL specifications. In our method, we suppose the parametrisations form a semi-algebraic set and we utilise a symbolic representation using the so-called cylindrical algebraic decomposition of corresponding multivariate polynomials. Specifically, we propose a new data structure allowing to compute and efficiently manipulate such representations. The new method is significantly faster than our previous method based on SMT. We apply the method to a set of rational dynamical systems representing complex biological mechanisms with non-linear behaviour.

[1]  Dejan Nickovic,et al.  On Temporal Logic and Signal Processing , 2012, ATVA.

[2]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[3]  Paolo Zuliani,et al.  BioPSy: An SMT-based Tool for Guaranteed Parameter Set Synthesis of Biological Models , 2015, CMSB.

[4]  Stefan Engblom,et al.  Stochastic focusing coupled with negative feedback enables robust regulation in biochemical reaction networks , 2015, Journal of The Royal Society Interface.

[5]  Ofer Strichman,et al.  Minimal unsatisfiable core extraction for SMT , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).

[6]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[7]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[8]  Lubos Brim,et al.  Parallel SMT-Based Parameter Synthesis with Application to Piecewise Multi-affine Systems , 2016, ATVA.

[9]  Edmund M. Clarke,et al.  dReal: An SMT Solver for Nonlinear Theories over the Reals , 2013, CADE.

[10]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[11]  Dejan Nickovic,et al.  Monitoring Temporal Properties of Continuous Signals , 2004, FORMATS/FTRTFT.

[12]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[13]  Gregor Gößler,et al.  Efficient parameter search for qualitative models of regulatory networks using symbolic model checking , 2010, Bioinform..

[14]  Lubos Brim,et al.  Exploring Parameter Space of Stochastic Biochemical Systems Using Quantitative Model Checking , 2013, CAV.

[15]  Lubos Brim,et al.  Pithya: A Parallel Tool for Parameter Synthesis of Piecewise Multi-affine Dynamical Systems , 2017, CAV.

[16]  Hui Kong,et al.  Abstraction-Based Parameter Synthesis for Multiaffine Systems , 2015, Haifa Verification Conference.

[17]  Sanjit A. Seshia,et al.  Reactive synthesis from signal temporal logic specifications , 2015, HSCC.

[18]  Alberto Griggio,et al.  A Simple and Flexible Way of Computing Small Unsatisfiable Cores in SAT Modulo Theories , 2007, SAT.

[19]  Antoine Girard,et al.  Hybridization methods for the analysis of nonlinear systems , 2007, Acta Informatica.

[20]  Carla Piazza,et al.  Parameter Synthesis Through Temporal Logic Specifications , 2015, FM.

[21]  Lubos Brim,et al.  High-Performance Discrete Bifurcation Analysis for Piecewise-Affine Dynamical Systems , 2015, HSB.

[22]  Alexander E. Kel,et al.  Bifurcation analysis of the regulatory modules of the mammalian G1/S transition , 2004, Bioinform..

[23]  Ezio Bartocci,et al.  System design of stochastic models using robustness of temporal properties , 2015, Theor. Comput. Sci..

[24]  Ryan L. Clark,et al.  Insights into the industrial growth of cyanobacteria from a model of the carbon-concentrating mechanism , 2014 .

[25]  Serge Haddad,et al.  Polynomial Interrupt Timed Automata , 2015, RP.

[26]  Stanislav Poslavsky,et al.  Rings: an efficient Java/Scala library for polynomial rings , 2017, Comput. Phys. Commun..

[27]  Scott McCallum Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition , 1993, Comput. J..

[28]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[29]  Changbo Chen,et al.  Computing with semi-algebraic sets represented by triangular decomposition , 2011, ISSAC '11.

[30]  Ezio Bartocci,et al.  From Cardiac Cells to Genetic Regulatory Networks , 2011, CAV.

[31]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[32]  Lubos Brim,et al.  STL⁎: Extending signal temporal logic with signal-value freezing operator , 2014, Inf. Comput..

[33]  Insup Lee,et al.  Toward patient safety in closed-loop medical device systems , 2010, ICCPS '10.

[34]  Lubos Brim,et al.  On Parameter Synthesis by Parallel Model Checking , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[35]  Bruce H. Krogh,et al.  Parameter Synthesis for Hybrid Systems with an Application to Simulink Models , 2009, HSCC.

[36]  Oded Maler,et al.  Computing reachable states for nonlinear biological models , 2009, Theor. Comput. Sci..

[37]  Calin Belta,et al.  Robustness analysis and tuning of synthetic gene networks , 2007, Bioinform..

[38]  François Fages,et al.  A general computational method for robustness analysis with applications to synthetic gene networks , 2009, Bioinform..