Self-assembled aliphatic chain extended polyurethane nanobiohybrids: emerging hemocompatible biomaterials for sustained drug delivery.

[1]  G. Pulverer,et al.  Controlled release of antibiotics from biomedical polyurethanes: morphological and structural features. , 1997, Biomaterials.

[2]  A. Mishra,et al.  Nanoparticle Controlled Self-Assembly in Varying Chain Extended Polyurethanes as Potential Nanobiomaterials , 2012 .

[3]  L. Abele,et al.  Polyurethane handbook : chemistry, raw materials, processing, application, properties , 1985 .

[4]  Nitin Kumar,et al.  High-performance elastomeric nanocomposites via solvent-exchange processing. , 2007, Nature materials.

[5]  S. Jackson Arterial thrombosis—insidious, unpredictable and deadly , 2011, Nature Medicine.

[6]  P. Mather,et al.  Polyhedral oligomeric silsesquioxane (POSS) suppresses enzymatic degradation of PCL-based polyurethanes. , 2011, Biomacromolecules.

[7]  Li-Fen Wang Studies on fluorinated polyurethanes by X-ray diffraction and density functional theory calculations with periodic boundary conditions , 2007 .

[8]  P. Maiti,et al.  Nanoparticle-induced controlled biodegradation and its mechanism in poly(epsilon-caprolactone). , 2010, ACS applied materials & interfaces.

[9]  Jinlian Hu,et al.  Theoretical study of hydrogen bonding interactions on MDI-based polyurethane , 2010, Journal of molecular modeling.

[10]  Bryan B. Sauer,et al.  Tapping-Mode AFM Studies Using Phase Detection for Resolution of Nanophases in Segmented Polyurethanes and Other Block Copolymers , 1997 .

[11]  James Runt,et al.  New Biomedical Poly(urethane urea)−Layered Silicate Nanocomposites , 2001 .

[12]  E. W. Meijer,et al.  Crystal structure and morphology of linear aliphatic n-polyurethanes , 2010 .

[13]  Jian Shen,et al.  Nano polyurethane-assisted ultrasensitive biodetection of H(2)O(2) over immobilized microperoxidase-11. , 2011, Biosensors & bioelectronics.

[14]  Martin Holzer,et al.  Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. , 2010, Toxicology.

[15]  E. W. Meijer,et al.  Synthesis and characterization of segmented copoly(ether urea)s with uniform hard segments , 2005 .

[16]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[17]  A. Hiltner,et al.  Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. , 2006, Biomaterials.

[18]  P. Maji,et al.  Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. , 2009, ACS Applied Materials and Interfaces.

[19]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[20]  K. Katti,et al.  Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering , 2008, Biomedical materials.

[21]  S. Shrivastava,et al.  Thrombus inducing property of atomically thin graphene oxide sheets. , 2011, ACS nano.

[22]  R. Oréfice,et al.  Montmorillonite clay-based polyurethane nanocomposite as local triamcinolone acetonide delivery system , 2011 .

[23]  I. Yilgor,et al.  Time-Dependent Morphology Development in a Segmented Polyurethane with Monodisperse Hard Segments Based on 1,4-Phenylene Diisocyanate , 2005 .

[24]  M. Morandi,et al.  Nanoparticle‐induced platelet aggregation and vascular thrombosis , 2005, British journal of pharmacology.

[25]  A. Mishra,et al.  Nanostructure to microstructure self-assembly of aliphatic polyurethanes: the effect on mechanical properties. , 2010, The journal of physical chemistry. B.

[26]  A. Mishra,et al.  Tunable Properties of Self-Assembled Polyurethane Using Two-Dimensional Nanoparticles: Potential Nano-biohybrid , 2010 .

[27]  F. Beyer,et al.  Structure–property behavior of segmented polyurethaneurea copolymers based on an ethylene–butylene soft segment , 2005 .

[28]  R. Mülhaupt,et al.  Polyurethane Nanocomposites Containing Laminated Anisotropic Nanoparticles Derived from Organophilic Layered Silicates , 1999 .

[29]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[30]  I. Yilgor,et al.  Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds , 2002 .

[31]  E. W. Meijer,et al.  Properties and morphology of segmented copoly(ether urea)s with uniform hard segments , 2006 .

[32]  S. Jana,et al.  Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties , 2005 .

[33]  E. W. Meijer,et al.  Molecular recognition in a thermoplastic elastomer. , 2005, Journal of the American Chemical Society.

[34]  C. Batt,et al.  Dramatic Enhancements in Toughness of Polyvinylidene Fluoride Nanocomposites via Nanoclay‐Directed Crystal Structure and Morphology , 2004 .

[35]  M. Misra,et al.  Tuned biodegradation using poly(hydroxybutyrate-co-valerate) nanobiohybrids: Emerging biomaterials for tissue engineering and drug delivery , 2011 .

[36]  Tanmay Bera,et al.  Characterization of antiplatelet properties of silver nanoparticles. , 2009, ACS nano.

[37]  Stuart L. Cooper,et al.  Morphology and properties of segmented polyether polyurethaneureas , 1983 .

[38]  Christy L Haynes,et al.  Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. , 2011, ACS applied materials & interfaces.

[39]  B. Ratner,et al.  Design of infection-resistant antibiotic-releasing polymers. II. Controlled release of antibiotics through a plasma-deposited thin film barrier. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[40]  M. Rogulska,et al.  Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. II. Synthesis and characterization of segmented polyurethanes from HDI and MDI , 2006 .

[41]  F. Malherbe,et al.  Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. , 2007, Biomaterials.

[42]  S. Cooper,et al.  Microphase separation and rheological properties of polyurethane melts. 1. Effect of block length , 1998 .

[43]  J. K. Mishra,et al.  New Millable Polyurethane/Organoclay Nanocomposite: Preparation, Characterization and Properties , 2003 .

[44]  M. Gelderman,et al.  Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. , 2009, Nano letters.

[45]  Thomas J. Pinnavaia,et al.  Nanolayer Reinforcement of Elastomeric Polyurethane , 1998 .

[46]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[47]  C. Batt,et al.  Effect of Nanoparticle Mobility on Toughness of Polymer Nanocomposites , 2005 .

[48]  S. Jana,et al.  Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods , 2005 .

[49]  N A Peppas,et al.  New challenges in biomaterials. , 1994, Science.

[50]  R. Singh,et al.  Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. , 2009, Acta biomaterialia.

[51]  N. Tsoukias,et al.  Carbon nanotube reinforced polylactide-caprolactone copolymer: mechanical strengthening and interaction with human osteoblasts in vitro. , 2009, ACS applied materials & interfaces.

[52]  P. Hammond,et al.  Preferential Association of Segment Blocks in Polyurethane Nanocomposites , 2006 .

[53]  Qihua Wang,et al.  Shape memory polyurethanes containing azo exhibiting photoisomerization function , 2010 .